| 研究生: |
許瀚夫 Hsu, Han-Fu |
|---|---|
| 論文名稱: |
單晶二矽化鉻奈米線之成長與特性分析 Growth of Single Crystalline CrSi2 nanowires and their properties |
| 指導教授: |
呂國彰
Lu, Kuo-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 化學氣相沉積 、二矽化鉻 、三矽化五鉻 、氣固 |
| 外文關鍵詞: | CVD, CrSi2, Cr5Si3, VS |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用簡易化學氣相沉積法(Chemical Vapor Deposition)於矽(100)基板上成長矽化鉻奈米線,並研究矽化鉻奈米線之成長機制與光學、電性、磁性上的探討。為了瞭解影響矽化鉻奈米線生成之因素,將從前驅物及基板溫度、流量、壓力、成長時間、載流氣體觀察這些因素如何影響矽化鉻奈米線的生成及其形貌。其結果會發現當基板溫度為700℃時,二矽化鉻茂密奈米線最容易生成。當使用氫氣做為還原氣體時,則生長出三矽化五鉻單晶奈米線,二矽化鉻以及三矽化五鉻其生長機制各有不同。
基板溫度為700℃所生長之二矽化鉻奈米線具有數奈米厚的二氧化矽層包覆於單晶二矽化鉻奈米線外層,其特殊的結構相對於二矽化鉻在磁性方面產生顯著的影響。在螢光分析上放射光譜出在綠光區塊。在場發射量測上,二矽化鉻具有較好的場發射特性,可以被拿來做為場發射材料,並對場發射陰陽極間距對增強因子的影響進行探討。一般在爐管操作溫度範圍之下二矽化鉻為主要生成相,而本實驗在較低溫下以氣-固(vapor-solid)方式製備三矽化五鉻,省下許多成本。
In this thesis, using a simple chemical vapor deposition method (Chemical Vapor Deposition) on Si (100) substrates that chromium silicide nanowires grown and studied chromium dsilicide nanowires growth mechanism and optical, electrical, magnetic probe on. In order to understand the impact of chromium silicide nanowires generate factors such as precursor and substrate temperature, flow, pressure, growth time, carrier gas observe how these factors affect chromium dsilicide formation and morphology of nanowires . It will be found that when the substrate temperature at 700 ℃, dense chromium disilicide nanowires easiest to build. When using hydrogen as a reducing gas, then grow out of Cr5Si3 , CrSi2 and Cr5Si3 that their growth mechanisms are different.
Substrate temperature is 700 ℃ by the growth of chromium disilicide nanowires with several nanometers thick silicon layer shelled on the single crystal of chromium disilicide nanowires outer layer, its special structure relative to the magnetic properties of chromium disilicide produce significant impact. In the fluorescence emission spectrum analysis lies in the green blocks. Field emission measurements on chromium disilicide has a better field emission characteristics, can be used as field emission materials, and the spacing between anode and cathode effect on the enhancement factor were discussed. Usually in the furnace tube in the operating temperature range as the main generator of CrSi2 phase, while the experiment at a lower temperature to synthesis Cr5Si3 by VS method.
[1]S. L. Zhang and M. Ostling, Crit. Rev. Solid State Mat. Sci., 28, 1–129(2003)
[2]L. J. Chen, Silicide Technology for Integrated Circuits, The
Institution of Electrical Engineers, London, UK(2004).
[3]S. L. Zhang and U. Smith, J. Vac. Sci. Technol., A, 22,
1361–1370(2004)
[4]W. P. Maszara, J. Electrochem. Soc., 152, G550–G555(2005)
[5]V. E. Borisenko, Semiconducting Silicides, Springer, Berlin, 39, 348(2000)
[6]D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, Nature,
387, 686–688(1997)
[7] M. C. Bost ,J. E. Mahan, J. Appl. Phys., 63, 839–844(1988)
[8]D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca
Raton; ch. 23–25(1994)
[9]S. Senthilarasu, R. Sathyamoorthy and S. Lalitha, Sol. Energy
Mater. Sol. Cells, 82, 299–305(2004)
[10]Y. Fukuzawa, T. Ootsuka, N. Otogawa, H. Abe, Y. Nakayama and
Y. Makita, Proc. SPIE–Int. Soc. Opt. Eng., 6197, 61970N(2006)
[11]G. Aeppli , J. F. DiTusa, Mater. Sci. Eng., B, 63, 119–124(1999)
[12]P. S. Riseborough, Adv. Phys. 49, 257–320(2000)
[13]C. Pfleiderer, D. Reznik, L. Pintschovius, H. von Lohneysen,
M. Garst and A. Rosch, Nature, 427, 227–231,(2004)
[14]C. Pfleiderer, S. R. Julian and G. G. Lonzarich, Nature, 414,
427–430(2001)
[15]Y. Ishikawa, K. Tajima, D. Bloch ,M. Roth, Solid State.
Commun., 19, 525–528,1976
[16]N. Manyala, J. F. DiTusa, G. Aeppli ,A. P. Ramirez, Nature,
454, 976–980(2008)
[17]A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, P. Boni, Phys. Rev. Lett., 102, 186602(2009)
[18]S. Muehlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,
A. Neubauer, R. Georgii and P. Boeni, Science 323, 915–919(2009)
[19]C.Y. Liu, W.S. Li, L.W. Chu, M.Y. Lu, C. J. Tsai, L. J. Chen, Nanotechnology 22, 055603(2011)
[20] W. W. Wu, K. C. Lu, C. W. Wang, H. Y. Hsieh, S. Y. Chen, Y. C. Chou, S. Y. Yu, L.J. Chen, K. N. Tu, Nano Lett., 10,10 ,984–3989(2010)
[21]J. Kim, APPLIED PHYSICS LETTERS 101, 233103 (2012)
[22]Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, C. J. Tsai et al.
Citation: Appl. Phys. Lett. 87, 223113 (2005)
[23]L. Ouyang, E.S.Thrall , M. M. Deshmukh ,Park, Adv. Mater., 18, 1437-1440 (2006)
[24]J. R. Szczech, A. L. Schmitt, M. J. Bierman and S. Jin, Chem. Mater., 19,238-3243. (2007)
[25]Y. P. Song, A. L. Schmitt and S.Jin, 7, 965-969. (2007)
[26]Y. P. Song and S. Jin., Appl. Phys. Lett, 60,173122.( 2007)
[27]A. L. Schmitt, M.J.B., D. Schmeisser, F. J. Himpsel ,S. Jin, NanoLett, 6,617-1621, (2006)
[28]A. L. Schmitt, L.Z., D. Schmeier, F. J. Himpsel ,. Jin, J. Phys. Chem, 110, 18142-18146. (2006)
[29]J. M. Higgins, A. L. Schmitt, I. A. Guzei ,S. Jin, J. Am. Chem. Soc, 130,16086-16094. (2008)
[30]A. L. Schmitt, J.M.Higgins and S.Jin, NanoLett, 8,10-815. (2008)
[31]S. Zhou, X. Liu, Y. Lin, D. Wang ,Volume 120, Issue 40, 7795–7798, September 22(2008)
[32]D. Leong,; M. Harry, K. J. Reeson, K. P. Homewood, Nature,87, 686(1997)
[33]L. F. Mattheiss,Phys. ReV. B, 43, 12549(1991)
[34]W. A. Anderson, A. E. Delahoy, R. A. Milano, J. Appl. Phys.45, 3913(1974)
[35]B. P. Bewlay, H. A. Lipsitt, M. R. Jackson, K.M. Chang.,Mater.
Manuf. Processes 9, 89(1994)
[36]I. J. Nishida, Mater. Sci. 7, 1119(1972)
[37]T. Tokushima., I. Nishida.,K. Sakata., T. Sakata., J. Mater. Sci.
4, 978(1969)
[38]S. P. Lewis, P. B. Allen, T. Sasaki, Phys. Rev. B 55, 10253 (1997)
[39]P. S. Robbert, H. Geisler, C. A. Ventrice, J. V. Ek, S. Chaturvedi, J. A. Rodriguez, M. Kuhn, U. Diebold, J. Vac. Sci. Technol. A 16, 990
(1998)
[40]100th Anniversary of the Discovery of X-ray Diffraction,
ChemViews Published Date: 08,June (2012)
[41]Single-crystal X-ray Diffraction, Christine M. Clark, Eastern Michigan University Barbara L. Dutrow, Louisiana State University
[42] AARHUS UNIVISITY interdisciplinary nanoscience center
[43]成大貴儀中心
[44]D. Y. Zhong, G. Y. Zhang, S. Liu, T. Sakurai, E. G. Wang ,APPLIED PHYSICS LETTERS,80 ,3 ,506-508,JAN,21(2002)
[45]T. C. Hou, Y. H. Han, S.C. Lo, C.T. Lee, H. Ouyang, L.J. Chen ,Appl. Phys. Lett. 98, 193104 (2011)
[46]A. L. Schmitt , J. M. Higgins , J. R. Szczech ,S. Jin,J. Mater. Chem., 20, 223–235(2010)
[47]K.C. Bhamu, Jagrati Sahariya, B.L. Ahuja, Journal of Physics and Chemistry of Solids, 74 ,765–771(2013)
[48]Y. Wang, N. Herron: Nanometer-Sized Semiconductor Clusters, J. Phys. Chem. 95, 525-532(1991)