| 研究生: |
張旭蕙 Chang, Hsu-Hui |
|---|---|
| 論文名稱: |
以即時FTIR研究Cu Pt/ TiO2奈米管複合觸媒光催化還原CO2之反應機制 In situ FTIR spectroscopic studies of reaction mechanisms for photocatalytic reduction of CO2 by CuPt/TiO2 nanotube composites. |
| 指導教授: |
王鴻博
Wang, Hong-Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 即時FTIR 、光催化還原二氧化碳 、二氧化碳吸附 、二氧化鈦奈米管 |
| 外文關鍵詞: | in situ FTIR, photocatalytic reduction of CO2, CO2 adsorption, TiO2 nanotube. |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類活動對於化石燃料的依賴日益增加,造成CO2的過度排放,並導致全球氣候變遷。因此,CO2減量是各國努力的目標。光催化還原CO2具有能夠直接利用太陽能的優勢,是目前最有潛力的方法之一。其中,CO2吸附是進行光催化反應的初始步驟,也被認為是影響反應活性的關鍵因素。 因此,利用傅立葉轉換紅外光譜儀,即時監測CO2吸附於TO2奈米管(TiNT)及負載銅與鉑之TiNT光觸媒。
以水熱法在鹼性及高壓環境中合成TiNT,並利用光化學沉積法負載銅及白金。以掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)觀察TiNT於反應 48小時後之長度約100 nm,內、外徑分別介於9~15及3~5 nm,並具有高比表面積(120 m2/g)。均勻負載於TiNT之金屬奈米顆粒約為1-5 nm。X光電子能譜(XPS)及拉曼光譜(RAMAN)顯示光觸媒表面具氧缺陷及Ti3+活性位。程式升溫CO2脫附曲線及紅外光譜顯示,比較於TiO2 (銳鈦礦)及TiNT與CO2分子具有較強的親和性。
在即時紅外光譜之1000-1800 cm-1的範圍中,觀察到光觸媒表面具有碳酸物種的吸收峰,包含:bidentate carbonate (b-CO32-)、monodentate carbonate(m-CO32-)、及bicarbonate(HCO3-)。此外,負載銅之Cu/TiNT具有較強的CO2吸收,並偵測到光催化還原反應關鍵物種(carboxyl species, CO2-)的形成。由XPS分析結果顯示,負載銅的TiNT之表面有豐富的氧缺陷,此種表面缺陷有利於CO2吸附。
因此,由即時紅外光譜觀察結果,可以得知光觸媒表面缺陷有助於光電子的傳遞,並使CO2吸附形成CO2-進而促使光催化反應的進行,因此未來研究可針對於材料的表面進行改質,設計更具有反應活性的光觸媒材料。
Rising atmospheric levels of CO2 has given rise to great concerns in climate change. Photocatalytic reduction of CO2 is a promising pathway utilizing the abundant solar energy to convert CO2 to low-carbon fuels or chemicals. CO2 adsorption is an initial and key step for the multi-electron electron transfer photocatalytic process. It is essential to have a better understanding of the photocatalyst surface chemistry.
In this study, the one-dimensional titania nanotube (TiNT) and metal-loaded TiNT photocatalysts were studied by in situ infrared spectroscopy. TiNT was prepared by the hydrothermal method in alkaline solution. In addition, TiNT was further modified with metal co-catalysts. Copper and platinum nanoparticles were loaded on the TiNT with the chemical photodeposition method.
The SEM and TEM images show the tubular structure of TiNT with the length of 100 nm and outer/inner opening diameters of 9-15/3-5 nm, and the metal nanoparticles were uniformly dispersed on TiNT. The high surface area (120 m2/g) of the TiNT was measured by N2 adsorption-desorption isotherm. Surface defects including Ti3+ and oxygen vacancies of the photocatalyst were measured by XPS and Raman spectroscopy. The FTIR spectra and CO2-TPD data suggest that the TiNT have a strong affinity to the CO2 molecules compared to the pristine TiO2.
By in situ FTIR studies for CO2 adsorption, a number of peaks related to the adsorbed carbonate species (1200-1800 cm-1) are found, including bidentate carbonate (b-CO32-), monodentate carbonate (m-CO32-), bicarbonate (HCO3-) and carboxyl species (CO2-). For the Cu/TiNT, the defect-rich (Ti3+/oxygen vacancies) surface may provide active sites to promote the CO2 adsorption ability. Note that the adsorbed carboxylate species (CO2-) formation are observed on the TiNT.
The observations show that the adsorption capacity and formation of carboxylate species may be adsorbed on the surface-active sites. To enhance the photocatalytic activity, more research should focus on the modification of detect-rich materials to promote CO2 adsorption and electron transfer.
Aaron, D., & Tsouris, C. (2005). Separation of CO2from Flue Gas: A Review. Separation Science and Technology, 40(1-3), 321-348.
Abdullah, H., Khan, M. M. R., Ong, H. R., & Yaakob, Z. (2017). Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. Journal of CO2 Utilization, 22, 15-32.
Abdullah, M., & Kamarudin, S. (2017). Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview. Renewable and Sustainable Energy Reviews, 76, 212-225.
Akhavan, O., & Ghaderi, E. (2009). Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. The Journal of Physical Chemistry C, 113(47), 20214-20220.
ALOthman, Z. A. (2012). A review: fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902.
Anitha, V., Goswami, A., Sopha, H., Nandan, D., Gawande, M. B., Cepe, K., Ng, S., Zboril, R., & Macak, J. M. (2018). Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Applied Materials Today, 10, 86-92.
Azelee, I. W., Goh, P., Lau, W., Ismail, A., Rezaei-DashtArzhandi, M., Wong, K., & Subramaniam, M. (2017). Enhanced desalination of polyamide thin film nanocomposite incorporated with acid treated multiwalled carbon nanotube-titania nanotube hybrid. Desalination, 409, 163-170.
Bao, Y., Huang, C., Chen, L., Zhang, Y., Liang, L., Wen, J., Fu, M., Wu, J., & Ye, D. (2018). Highly efficient Cu/anatase TiO2 {001}-nanosheets catalysts for methanol synthesis from CO2. Journal of Energy Chemistry.
Bazzo, A., & Urakawa, A. (2013). Origin of photocatalytic activity in continuous gas phase CO2 reduction over Pt/TiO2. ChemSusChem, 6(11), 2095-2102.
Bhattacharyya, K., Danon, A., K. Vijayan, B., Gray, K. A., Stair, P. C., & Weitz, E. (2013). Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study. The Journal of Physical Chemistry C, 117(24), 12661-12678.
Bhattacharyya, K., Wu, W., Weitz, E., Vijayan, B. K., & Gray, K. A. (2015). Probing Water and CO2 Interactions at the Surface of Collapsed Titania Nanotubes Using IR Spectroscopy. Molecules, 20(9), 15469-15487.
Blamey, J., Anthony, E. J., Wang, J., & Fennell, P. S. (2010). The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 36(2), 260-279.
Brangule, A., & Gross, K. A. (2015). Importance of FTIR spectra deconvolution for the analysis of amorphous calcium phosphates. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Chang, X., Wang, T., & Gong, J. (2016a). CO2 photo-reduction: insights into CO2activation and reaction on surfaces of photocatalysts. Energy Environ. Sci., 9(7), 2177-2196.
Chang, X., Wang, T., & Gong, J. (2016b). CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy & Environmental Science, 9(7), 2177-2196.
Chiarello, G. L., Ferri, D., & Selli, E. (2018). In situ attenuated total reflection infrared spectroscopy study of the photocatalytic steam reforming of methanol on Pt/TiO2. Applied Surface Science, 450, 146-154.
Chien, S.-H., Liou, Y.-C., & Kuo, M.-C. (2005). Preparation and characterization of nanosized Pt/Au particles on TiO2-nanotubes. Synthetic Metals, 152(1-3), 333-336.
Choudhury, B., Bayan, S., Choudhury, A., & Chakraborty, P. (2016). Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity. Journal of colloid and interface science, 465, 1-10.
Colon, G., Maicu, M., Hidalgo, M. s., & Navio, J. (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 67(1-2), 41-51.
Cuéllar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization, 9, 82-102.
Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J., & Fennell, P. S. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research and Design, 89(6), 836-855.
Djurišić, A. B., Leung, Y. H., & Ching Ng, A. M. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1(4).
Donohue, M., & Aranovich, G. (1998). Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, 76, 137-152.
Du, G., Chen, Q., Che, R., Yuan, Z., & Peng, L.-M. (2001). Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters, 79(22), 3702-3704.
El Koura, Z., Cazzanelli, M., Bazzanella, N., Patel, N., Fernandes, R., Arnaoutakis, G., Gakamsky, A., Dick, A., Quaranta, A., & Miotello, A. (2016). synthesis and characterization of Cu and N codoped RF-sputtered TiO2 films: photoluminescence dynamics of charge carriers relevant for water splitting. The Journal of Physical Chemistry C, 120(22), 12042-12050.
Endut, Z., Hamdi, M., & Basirun, W. J. (2013). An investigation on formation and electrochemical capacitance of anodized titania nanotubes. Applied Surface Science, 280, 962-966.
Erjavec, B., Tišler, T., Tchernychova, E., Plahuta, M., & Pintar, A. (2017). Self-Doped Cu-Deposited Titania Nanotubes as Efficient Visible Light Photocatalyst. Catalysis Letters, 147(7), 1686-1695.
Esler, M. B., Griffith, D. W., Wilson, S. R., & Steele, L. P. (2000). Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air. Analytical Chemistry, 72(1), 206-215.
Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., & Varma, R. S. (2016). Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem Rev, 116(6), 3722-3811.
Ge, M., Li, Q., Cao, C., Huang, J., Li, S., Zhang, S., Chen, Z., Zhang, K., Al‐Deyab, S. S., & Lai, Y. (2017). One‐dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting. Advanced Science, 4(1).
Guayaquil-Sosa, J., Serrano-Rosales, B., Valadés-Pelayo, P., & de Lasa, H. (2017). Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Applied Catalysis B: Environmental, 211, 337-348.
Guo, Q., Zhang, Q., Wang, H., Liu, Z., & Zhao, Z. (2017). Unraveling the role of surface property in the photoreduction performance of CO2 and H2O catalyzed by the modified ZnO. Molecular Catalysis, 436, 19-28.
Guo, Q., Zhang, Q., Wang, H., & Zhao, Z. (2018). ZnO2-promoted ZnO as an efficient photocatalyst for the photoreduction of carbon dioxide in the presence of water. Catalysis Communications, 103, 24-28.
Gupta, B., Melvin, A. A., Matthews, T., Dash, S., & Tyagi, A. (2016). TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renewable and Sustainable Energy Reviews, 58, 1366-1375.
Habisreutinger, S. N., Schmidt-Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl, 52(29), 7372-7408.
Habisreutinger, S. N., Schmidt‐Mende, L., & Stolarczyk, J. K. (2013). Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 52(29), 7372-7408.
Hamdy, M. S., Amrollahi, R., & Mul, G. (2012). Surface Ti3+-containing (blue) titania: A unique photocatalyst with high activity and selectivity in visible light-stimulated selective oxidation. ACS Catalysis, 2(12), 2641-2647.
Hoyer, P. (1996). Formation of a titanium dioxide nanotube array. Langmuir, 12(6), 1411-1413.
Huang, K.-C., & Chien, S.-H. (2013). Improved visible-light-driven photocatalytic activity of rutile/titania-nanotube composites prepared by microwave-assisted hydrothermal process. Applied Catalysis B: Environmental, 140, 283-288.
Hunger, M., & Weitkamp, J. (2001). In situ IR, NMR, EPR, and UV/Vis spectroscopy: Tools for new insight into the mechanisms of heterogeneous catalysis. Angewandte Chemie International Edition, 40(16), 2954-2971.
Iijima, S. (1991). Helical microtubules of graphitic carbon. nature, 354(6348), 56.
Izumi, Y. (2013). Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257(1), 171-186.
Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z., & Wang, H. (2017). Doping of graphitic carbon nitride for photocatalysis: A reveiw. Applied Catalysis B: Environmental, 217, 388-406.
Jiang, Z., Wan, W., Li, H., Yuan, S., Zhao, H., & Wong, P. K. (2018). A Hierarchical Z‑Scheme α‐Fe2O3/g‐C3N4 oHybrid for Enhanced Photocatalytic CO2 Reduction. Advanced Materials.
Kanan, S. M., & Tripp, C. P. (2007). Synthesis, FTIR studies and sensor properties of WO3 powders. Current Opinion in Solid State and Materials Science, 11(1-2), 19-27.
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1999). Titania nanotubes prepared by chemical processing. Advanced Materials, 11(15), 1307-1311.
Khan, M. M., Ansari, S. A., Pradhan, D., Ansari, M. O., Lee, J., & Cho, M. H. (2014). Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2(3), 637-644.
Khoo, H. H., & Tan, R. B. (2006). Life cycle investigation of CO2 recovery and sequestration. Environmental science & technology, 40(12), 4016-4024.
Kim, S., & Park, H. (2013). Sunlight-harnessing and storing heterojunction TiO2/Al2O3/WO3 electrodes for night-time applications. RSC Advances, 3(38).
Knez, M., Nielsch, K., & Niinistö, L. (2007). Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Advanced Materials, 19(21), 3425-3438.
Köck, E.-M., Kogler, M., Bielz, T., Klötzer, B., & Penner, S. (2013). In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. The Journal of Physical Chemistry C, 117(34), 17666-17673.
Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O., & Pérez-Ramírez, J. (2013). Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy & Environmental Science, 6(11), 3112-3135.
Kotowicz, J., & Janusz-Szymańska, K. (2010). Influence of membrane CO2 separation on the operating characteristics of a coal-fired power plant. Chemical and Process Engineering, 31(4), 681-698.
Kubacka, A., Fernandez-Garcia, M., & Colon, G. (2012). Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev, 112(3), 1555-1614.
Kudo, A., & Miseki, Y. (2009). Heterogeneous ophotocatalyst materials for water splitting. Chem Soc Rev, 38(1), 253-278.
Lee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: nanotubes. Chemical reviews, 114(19), 9385-9454.
Li, K., Peng, B., & Peng, T. (2016). Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catalysis, 6(11), 7485-7527.
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 95(3), 735-758.
Liu, G., Yang, H. G., Wang, X., Cheng, L., Lu, H., Wang, L., Lu, G. Q., & Cheng, H.-M. (2009). Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets. The Journal of Physical Chemistry C, 113(52), 21784-21788.
Liu, L., Gao, F., Zhao, H., & Li, Y. (2013). Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 134, 349-358.
Liu, L., & Li, Y. (2014). Understanding the reaction mechanism of photocatalytic reduction of CO2 with on TiO2-based photocatalysts: a review. Aerosol Air Qual Res, 14(2), 453-469.
Liu, L., Zhao, C., & Li, Y. (2012). Spontaneous dissociation of CO2 to CO on defective surface of Cu (I)/TiO2–x nanoparticles at room temperature. The Journal of Physical Chemistry C, 116(14), 7904-7912.
Liu, L., Zhao, C., Miller, J. T., & Li, Y. (2016). Mechanistic study of CO2 photoreduction with H2O on Cu/TiO2 nanocomposites by in situ x-ray absorption and infrared spectroscopies. The Journal of Physical Chemistry C, 121(1), 490-499.
Liu, L., Zhao, H., Andino, J. M., & Li, Y. (2012). Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catalysis, 2(8), 1817-1828.
Liu, Y., Li, Z., Green, M., Just, M., Li, Y. Y., & Chen, X. (2017). Titanium dioxide nanomaterials for photocatalysis. Journal of Physics D: Applied Physics, 50(19), 193003.
Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., & Li, C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical reviews, 114(19), 9987-10043.
Macak, J. M., Albu, S. P., & Schmuki, P. (2007). Towards ideal hexagonal self‐ordering of TiO2 nanotubes. physica status solidi (RRL)-Rapid Research Letters, 1(5), 181-183.
Marschall, R. (2014). Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 24(17), 2421-2440.
Marszewski, M., Cao, S., Yu, J., & Jaroniec, M. (2015). Semiconductor-based photocatalytic CO2 conversion. Materials Horizons, 2(3), 261-278.
Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., & Schiavello, M. (1999). The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst: a FTIR study. Catalysis today, 53(4), 695-702.
Menzel, R., Peiró, A. M., Durrant, J. R., & Shaffer, M. S. (2006). Impact of hydrothermal processing conditions on high aspect ratio titanate nanostructures. Chemistry of materials, 18(25), 6059-6068.
Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 108(1), 1-35.
Moazeni, M., Hajipour, H., Askari, M., & Nusheh, M. (2015). Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents. Materials Research Bulletin, 61, 70-75.
Moongraksathum, B., & Chen, Y.-W. (2017). Anatase TiO2 co-doped with silver and ceria for antibacterial application. Catalysis today.
Mor, G. K., Varghese, O. K., Paulose, M., & Grimes, C. A. (2005). Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Advanced Functional Materials, 15(8), 1291-1296.
Nakata, K., & Fujishima, A. (2012a). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
Nakata, K., & Fujishima, A. (2012b). TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
Oreskes, N. (2018). The Scientific Consensus on Climate Change: How Do We Know We’re Not Wrong? In E. A. Lloyd & E. Winsberg (Eds.), Climate Modelling: Philosophical and Conceptual Issues (pp. 31-64). Cham: Springer International Publishing.
Pan, J., Wu, X., Wang, L., Liu, G., Lu, G. Q. M., & Cheng, H.-M. (2011). Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chemical Communications, 47(29), 8361-8363.
Pan, Y.-X., Sun, Z.-Q., Cong, H.-P., Men, Y.-L., Xin, S., Song, J., & Yu, S.-H. (2016). Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Research, 9(6), 1689-1700.
Park, H., Park, Y., Kim, W., & Choi, W. (2013). Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15, 1-20.
Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K., & Grimes, C. A. (2006). Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics D: Applied Physics, 39(12), 2498.
Petroleum, B. (2012). Energy outlook 2030. Statistical review.
Pham, V. H., Nguyen-Phan, T.-D., Tong, X., Rajagopalan, B., Chung, J. S., & Dickerson, J. H. (2018). Hydrogenated TiO2@ reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon, 126, 135-144.
Qian, L., Du, Z.-L., Yang, S.-Y., & Jin, Z.-S. (2005). Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure, 749(1-3), 103-107.
Quan, X., Ruan, X., Zhao, H., Chen, S., & Zhao, Y. (2007). Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environmental Pollution, 147(2), 409-414.
Ratanatawanate, C., Xiong, C., & Balkus Jr, K. J. (2008). Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS nano, 2(8), 1682-1688.
Ravidhas, C., Anitha, B., Venkatesh, R., Monica, S. E. S., Gopalakrishna, D., Raj, A. M. E., & Ravichandran, K. (2018). Role of fluorine doping on luminescence centers and enhanced photocatalytic performance of nebulizer sprayed TiO2 films under visible light. Journal of Luminescence, 198, 272-283.
Rayalu, S. S., Jose, D., Mangrulkar, P. A., Joshi, M., Hippargi, G., Shrestha, K., & Klabunde, K. (2014). Photodeposition of AuNPs on metal oxides: Study of SPR effect and photocatalytic activity. International Journal of Hydrogen Energy, 39(8), 3617-3624.
Reddy, K. R., Gomes, V. G., & Hassan, M. (2014). Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis. Materials Research Express, 1(1), 015012.
Ren, R., Wen, Z., Cui, S., Hou, Y., Guo, X., & Chen, J. (2015). Controllable synthesis and tunable photocatalytic properties of Ti 3+-doped TiO2. Scientific reports, 5, 10714.
Rhodes, C. J. (2016). The 2015 Paris Climate Change Conference: COP21. Science Progress, 99(1), 97-104.
Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition, 50(13), 2904-2939.
Ryczkowski, J. (2001). IR spectroscopy in catalysis. Catalysis today, 68(4), 263-381.
Sakai, Y., Shimanaka, A., Shioi, M., Kato, S., Satokawa, S., Kojima, T., & Yamasaki, A. (2015). Fabrication of high-sensitivity palladium loaded tungsten trioxide photocatalyst by photodeposite method. Catalysis today, 241, 2-7.
Sandoval, A., Zanella, R., & Klimova, T. E. (2017). Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation. Catalysis today, 282, 140-150.
Seadira, T. W., Sadanandam, G., Ntho, T., Masuku, C. M., & Scurrell, M. S. (2018). Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol. Applied Catalysis B: Environmental, 222, 133-145.
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R., & Wilby, R. L. (2016). Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529(7587), 477-483.
Sing, K. S., & Williams, R. T. (2004). Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology, 22(10), 773-782.
Singhal, N., & Kumar, U. (2017). Noble metal modified TiO2: selective photoreduction of CO2 to hydrocarbons. Molecular Catalysis, 439, 91-99.
Siuzdak, K., Sawczak, M., Klein, M., Nowaczyk, G., Jurga, S., & Cenian, A. (2014). Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water. Physical Chemistry Chemical Physics, 16(29), 15199-15206.
Sorescu, D. C., Al-Saidi, W. A., & Jordan, K. D. (2011). CO2 adsorption on TiO2 (101) anatase: A dispersion-corrected density functional theory study. The Journal of chemical physics, 135(12), 124701.
Su, W., Zhang, J., Feng, Z., Chen, T., Ying, P., & Li, C. (2008). Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. The Journal of Physical Chemistry C, 112(20), 7710-7716.
Subramaniam, M., Goh, P., Abdullah, N., Lau, W., Ng, B., & Ismail, A. (2017). Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. Journal of Nanoparticle Research, 19(6), 220.
Svejcar, T., Mayeux, H., & Angell, R. (1997). The rangeland carbon dioxide flux project. Rangelands, 16-18.
Tada, H., Fujishima, M., & Kobayashi, H. (2011). Photodeposition of metal sulfide quantum dots on titanium (IV) dioxide and the applications to solar energy conversion. Chemical Society Reviews, 40(7), 4232-4243.
Thommes, M. (2010). Physical adsorption characterization of nanoporous materials. Chemie Ingenieur Technik, 82(7), 1059-1073.
Tjandra, A. D., & Huang, J. (2018). Photocatalytic carbon dioxide reduction by photocatalyst innovation. Chinese Chemical Letters.
Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., & Ye, J. (2012). Nano-photocatalytic materials: possibilities and challenges. Adv Mater, 24(2), 229-251.
Tsuchiya, H., Macak, J. M., Ghicov, A., Räder, A. S., Taveira, L., & Schmuki, P. (2007). Characterization of electronic properties of TiO2 nanotube films. Corrosion science, 49(1), 203-210.
Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State‐of‐the‐Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26(27), 4607-4626.
Tu, W. G., Zhou, Y., & Zou, Z. G. (2014). Photocatalytic Conversion of CO2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26(27), 4607-4626.
Vijayan, B. K., Dimitrijevic, N. M., Wu, J., & Gray, K. A. (2010). The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. The Journal of Physical Chemistry C, 114(49), 21262-21269.
Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., & Wang, X. (2014). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev, 43(15), 5234-5244.
Wang, W.-N., An, W.-J., Ramalingam, B., Mukherjee, S., Niedzwiedzki, D. M., Gangopadhyay, S., & Biswas, P. (2012). Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. Journal of the American Chemical Society, 134(27), 11276-11281.
Wang, W., Varghese, O. K., Paulose, M., Grimes, C. A., Wang, Q., & Dickey, E. C. (2004). A study on the growth and structure of titania nanotubes. Journal of materials research, 19(2), 417-422.
Wang, W., Xu, D., Cheng, B., Yu, J., & Jiang, C. (2017). Hybrid carbon@ TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity. Journal of Materials Chemistry A, 5(10), 5020-5029.
Wu, W., Bhattacharyya, K., Gray, K., & Weitz, E. (2013). Photoinduced reactions of surface-bound species on titania nanotubes and platinized titania nanotubes: an in situ FTIR study. The Journal of Physical Chemistry C, 117(40), 20643-20655.
Wu, Y., Xing, M., Tian, B., Zhang, J., & Chen, F. (2010). Preparation of nitrogen and fluorine co-doped mesoporous TiO2 microsphere and photodegradation of acid orange 7 under visible light. Chemical Engineering Journal, 162(2), 710-717.
Xia, X., Peng, S., Bao, Y., Wang, Y., Lei, B., Wang, Z., Huang, Z., & Gao, Y. (2018). Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation. Journal of Power Sources, 376, 11-17.
Xiang, X., Pan, F., & Li, Y. (2017). A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials. Advanced Composites and Hybrid Materials, 1-26.
Xu, S., Du, A. J., Liu, J., Ng, J., & Sun, D. D. (2011). Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water. International Journal of Hydrogen Energy, 36(11), 6560-6568.
Yadav, H. M., Otari, S. V., Koli, V. B., Mali, S. S., Hong, C. K., Pawar, S. H., & Delekar, S. D. (2014). Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A: Chemistry, 280, 32-38.
Yamamoto, M., Yoshida, T., Yamamoto, N., Yoshida, H., & Yagi, S. (2014). In-Situ FT-IR Study on the Mechanism of CO2 Reduction with Water over Metal (Ag or Au) Loaded Ga2O3 Photocatalysts. e-Journal of Surface Science and Nanotechnology, 12, 299-303.
Yang, C.-C., Yu, Y.-H., van der Linden, B., Wu, J. C., & Mul, G. (2010). Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? Journal of the American Chemical Society, 132(24), 8398-8406.
Yang, G., Chen, D., Ding, H., Feng, J., Zhang, J. Z., Zhu, Y., Hamid, S., & Bahnemann, D. W. (2017). Well-designed 3D ZnIn2S4 nanosheets/TiO2 nanobelts as direct Z-scheme photocatalysts for CO2 photoreduction into renewable hydrocarbon fuel with high efficiency. Applied Catalysis B: Environmental, 219, 611-618.
Yang, R., Fu, Y., Zhang, Y., & Tsubaki, N. (2004). In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter. Journal of Catalysis, 228(1), 23-35.
Yin, W.-J., Wen, B., Bandaru, S., Krack, M., Lau, M., & Liu, L.-M. (2016). The effect of excess electron and hole on CO2 adsorption and activation on rutile (110) surface. Scientific reports, 6, 23298.
Yu, C.-H. (2012). A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research.
Yu, L., Shao, Y., & Li, D. (2017). Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Applied Catalysis B: Environmental, 204, 216-223.
Zarringhadam, P., & Farhadi, S. (2018). Hydrothermal Synthesis of Novel Magnetic Plate-Like Bi2O2CO3/CoFe2O4 Hybrid Nanostructures and Their Catalytic Performance for the Reduction of Some Aromatic Nitrocompounds. Acta Chimica Slovenica.
Zhang, G., Zhang, T., Li, B., Zhang, X., Hai, L., Chen, X., & Du, P. (2017). Biomimetic synthesis of micro/nanostructured tubular TiO2 photocatalyst: adjusting the shape of the outer tube wall from nanoparticles to interlaced nanofibers and nanobelts. CrystEngComm, 19(17), 2312-2319.
Zhang, Q.-H., Han, W.-D., Hong, Y.-J., & Yu, J.-G. (2009). Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catalysis today, 148(3-4), 335-340.
Zhang, X., Qin, J., Xue, Y., Yu, P., Zhang, B., Wang, L., & Liu, R. (2014). Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific reports, 4, 4596.
Zhao, J., Li, Y., Zhu, Y., Wang, Y., & Wang, C. (2016). Enhanced CO2 photoreduction activity of black TiO2− coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. Applied Catalysis A: General, 510, 34-41.
Zhen, G., Lu, X., Kumar, G., Bakonyi, P., Xu, K., & Zhao, Y. (2017). Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives. Progress in Energy and Combustion Science, 63, 119-145.
Zheng, Y., Zhang, W., Li, Y., Chen, J., Yu, B., Wang, J., Zhang, L., & Zhang, J. (2017). Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy, 40, 512-539.
Zhu, Q., Peng, Y., Lin, L., Fan, C.-M., Gao, G.-Q., Wang, R.-X., & Xu, A.-W. (2014). Stable blue TiO2− x nanoparticles for efficient visible light photocatalysts. Journal of Materials Chemistry A, 2(12), 4429-4437.