| 研究生: |
謝宗恩 Hsieh, Tsung-En |
|---|---|
| 論文名稱: |
以克利金方法建立臺灣本島經典氣象年太陽輻射量與漫射率之分布 Mapping the Global Solar Radiation and Diffuse Fraction Distributions in Taiwan Using Kriging Method |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 經典氣象年 、克利金 、殘差克利金 、漫射分率 、太陽熱能 、漫射模型 |
| 外文關鍵詞: | Typical Meteorological Year, Residual Kriging, Diffuse Fraction, Solar Thermal, Diffuse Model |
| 相關次數: | 點閱:135 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國之土地面積約為三萬六千平方多公里,但是有提供太陽輻射量的氣象觀測站在本島僅有25站,平均約一千五百平方公里才有一個資料點。因此為彌補氣象站不足的狀況,本文使用克利金法來進行內插估測,以現有的數據資料點推估並繪製臺灣地區的太陽能輻射量分布地圖。此外也會套用透過實驗歸納出來的漫射模型,繪製臺灣漫射分率(Diffuse Fraction)分布圖,將有利於推估漫射分率,並進而推估各地日射直達量的數值,有利於日後太陽熱能領域之應用依據。
本文依據TMY3的步驟跟建研所的建議進行臺灣2004-2018共15年間的全日空輻射量進行經典氣象年的篩選,通過篩選後的數據套用漫射模型同樣建立資料表,再利用兩者計算出直射量。並將全日空輻射量、漫射分率、直射量以殘差克利金方法(Residual Kriging) 來進行空間結構分布模擬,並以5 km × 5 km的網格輸出成表格,以供未來在太陽能領域之使用,並依據該表格以0.1 km × 0.1 km繪製成等值線分布圖。此外會將經典氣象年數據套用漫射模型計算出漫射分率以及太陽直射量(Beam radiation),並同樣以殘差克利金方法輸出網格及繪製分布圖供未來他人使用。
The territory of Republic of China (Taiwan) is about 36,000 square kilometers, whereas there are only 31 meteorological stations that observe solar radiation. If the remote-island stations are excluded, there remain 24 stations (before 2018). It means that there is one weather station (A data point) is 1,500 square kilometers. In order to make up for the extent of lack of weather stations, this sought of paper uses in the kriging method for interpolation of the data points to estimate and draw the distribution contour map of solar radiation in Taiwan. In addition, the available diffusion models are firstly applied to calculate the values of diffuse fraction and beam radiation, and then draw the distribution contour maps. It will be very much beneficial to the application of solar thermal energy in future.
According to the method of TMY3 (Wilcox and Marion, 2008), the typical meteorological years were screened for the total solar radiation in Taiwan during from 2004 to 2018. The residual kriging method was used to generate the better spatial structure. The base distribution will be output as tables with a grid of 5 km × 5 km, also to draw contour maps of a grid of 0.1 km × 0.1 km based on these tables. It is drawn using Surfer13. In addition, the typical meteorological year data will be applied to the diffuse models to calculate the diffuse fraction and also the beam radiation. The residual kriging method is eventually used to output the grid tables and draw the contour maps.
Alsamamra, H., Ruiz-Arias, J. A., Pozo-Vazquez, D., & Tovar-Pescador, J., “A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain”, Agricultural and Forest Meteorology, vol. 149(8), pp. 1343-1357, 2009.
Argiriou, A., Lykoudis, S., Kontoyiannidis, S., Balaras, C. A., Asimakopoulos, D., Petrakis, M., & Kassomenos, P., "Comparison of methodologies for tmy generation using 20 years data for Athens, Greece." Solar Energy, vol. 66(1), pp. 33-45, 1999.
ArcGIS: https://www.arcgis.com/index.html
Becker, C. F., & Boyd, J. S., “Solar radiation availability on surfaces in the United States as affected by season, orientation, altitude and cloudiness”, Solar Energy, vol. 1(1), pp. 13-21, 1957.
Cebecauer, T., & Suri, M., “Typical Meteorological Year data: SolarGIS approach”, Energy Procedia, vol. 69, pp. 1958-1969, SolarPACES Conf., 2015.
Cressie, N., “The Origins of Kriging”, Mathematical Geology, vol. 22(3), pp. 239–252, 1990.
Duffie, J. A., & Beckman W. A., Solar Engineering of Thermal Processes, fourth edition, John Wiley & Sons, 2013.
Ertekin, C., & Evrendilek, F., “Spatio-temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey”, Agricultural and Forest Meteorology, vol. 145, pp. 36-47, 2007.
Hall, I., Prairie, R., Anderson, H., & Boes, E., “Generation of Typical Meteorological Years for 26 SOLMET Stations.”, SAND78-1601, Albuquerque, NM(USA): Sandia National Laboratories, 1978.
Hemyari, P., & Nofziger, D. L., “Analytical Solution for Punctual Kriging in one Dimension”, Soil Science Society of America Journal, vol. 51(1), pp. 268-269, 1987.
Huang, K. T., “Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application”, Renewable Energy, vol. 157, pp. 1102-1115, 2020.
Isaaks, E. H., & Srivastava, R. M., Applied Geostatistics, New York Oxford University Press, 1989.
Kalogirou, S.A., “Generation of Typical Meteorological Year(TMY-2) for Nicosia, Cyprus”, Renewable Energy, vol. 28(15), pp. 2317-2334, 2003.
Krige, D. G., “A statistical approach to some basic mine valuation problems on the witwatersrand”, Journal of the Chemical Metallurgical & Mining Society of South Africa, vol. 52(6), pp. 119-139, 1951.
Lichtenstern, A., Kriging Methods in Spatial Statistics, Bachelor’s Thesis, Technische Universitat Munchen Department of Mathematics, Germany, 2013.
Marion, W., & Urban, K., National Renewable Energy Laboratory (NREL), User’s Manual for TMY2s, Technical report, 1995.
Matheron, G., “Principles of geostatistics”, Economy Geology, vol. 58, pp. 1246-1266, 1963.
Matheron, G., Theory of Regionalized Variables and Its Applications., Les Cahiers du Centre de Morphologie Mathematique in Fontainebleu, Paris, 1971.
Meyer, R., Beyer, H.G., Fanslau, J., Geuder, N., Hammer, A., Hirsch, T., Hoyer-Klick, C., Schmidt, N., & Schwand, M., “Towards standardization of CSP yield assessments”, SolarPACES Conf., 2009.
Ord, J. K., In Encyclopedia of Statistical Sciences, vol. 4, Kriging, entry, S. Kotz and N. Johnson (Eds.), Wiley, New York, pp. 411-413, 1983.
Park, J., Das A., & Park J., “new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea”, Energy Conversion and Management, vol. 101, pp. 30-39, 2015.
Pissimanis, D., Karras, G., Notaridou V., & Gavra, K., "The generation of a “typical meteorological year” for the city of Athens." Solar Energy , vol. 40(5), pp. 405-411, 1988.
Rene, J. F., Modeling of the Global Solar Radiation Distribution in Taiwan using Residual Kriging Method, National Cheng Kung University Master’s Thesis, Taiwan, 2017.
Roesch, A., Wild, M., Ohmura, A., Dutton, E. G., Long, C. N., & Zhang, T., “Assessment of BSRN radiation records for the computation of monthly means”, Atmospheric Measurement Techniques, vol. 4, pp. 339-354, 2011.
Sluiter, R., “Interpolation methods for climate data literature review”, KNMI intern rapport. De Bilt: Roya, Netherlands Meteorological Institute, Netherlands, 2009.
Surfer: https://www.goldensoftware.com/products/surfer
Utts, J. M., & Heckard, R. F., Mind on Statistics, Third Edition, Thomson Brooks/Cole, 2006.
Wilcox, S., & Marion, W., National Renewable Energy Laboratory (NREL), User’s Manual for TMY3 Data Sets, Technical report, 2008.
WMO-No. 8, Guide to Instruments and Methodsof Observation, World Meteorological Organization, 2018 edition, Vol. I – Measurement of Meteorological Variables, Chapter 7, 2018.
Wu, T., & Li, Y., “Spatial interpolation of temperature in the United States using residual kriging”, Applied Geography, vol. 44, pp. 112-120, 2013
交通部中央氣象局,”中華民國99年氣候資料年報”,第一部分 - 地面資料,臺灣交通部中央氣象局報告,pp. ix,2010。
何明錦、黃國倉、王仁俊、余文元、林政賢,” 臺灣建築能源模擬解析用逐時標準氣象資料 TMY3 之建置與研究”, 內政部建築研究所協同研究報告,2013年。
林峻廷、張克勤,”比對氣象站所良射太陽輻射量數據 – 以澎湖與臺東兩氣象站為例”,氣象學報,vol. 56(1),pp. 25-39,2020年
林峻廷,”國內太陽漫射分率模式之建立”,國立成功大學碩士論文,臺灣,2022年
張克勤、嚴偉倫、劉家維,”國內2004-2013年間經典氣象年之日射量調查分析”,台灣能源期刊,vol. 3(1),pp. 89-101,2016年。
連琮勛、連政佳、吳宜珍、鄭克聲、潘宗毅、黃立遠、李正利、潘彥華, “地理統計應用於臺北市山坡地雨量站網評估與調整”, 中華水土保持學報, vol. 45(3), pp.155-164, 2014.
測站資料來源: https://e-service.cwb.gov.tw/wdps/obs/state.htm (2021.01.10)
黃裕翔,”應用通用共克利金法結合不同雨量站往資料之空間變異推估”台北科技大學土木與防災研究所碩士論文,臺灣,2012年。
劉家維,”以地理統計方法繪製台灣地區太陽能輻射量分布”,國立成功大學碩士論文,臺灣,2016年。
蔡宗旻、顏沛華、郭錦燐,”屏東平原流通係數空間變異性之探討”, 農業工程學報,vol. 55(1),pp. 65-80,2009年。
嚴偉倫,”建立台灣在經典氣象年中的太陽能資料庫”,國立成功大學碩士論文,臺灣,2015年。
觀測資料來源: https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (2020.02.23)