簡易檢索 / 詳目顯示

研究生: 王軍平
Wang, Chun-Pinn
論文名稱: 應用有限元素法於壓阻式聲響微感測器之最佳靈敏度研究
Optimum Sensitivity Analysis of Piezoresistive Acoustic Microsensor Using Finite Element Method
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 128
中文關鍵詞: 多晶矽水聲微感測器壓阻效應靈敏度有限元素法壓阻元件有效長度非有效長度
外文關鍵詞: acoustic micro-sensor, effective length, piezo-resitive sensing device, sensitivity, FEM, piezo-resistive effect, non-effective length, poly-silicon
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在輔助由面型微細加工(surface-micromachining)技術所開發出來的水聲微感測器元件之最佳分析。此感測器之原理是利用薄膜結構上所鋪設的壓阻材料(多晶矽),當薄膜結構承受聲壓而產生應力或應變量時,由壓阻效應以獲得其相對應之電阻值。本研究在不考慮受外界溫度影響的條件下,利用惠斯登電橋電路,將聲學訊號轉換為電壓訊號,以建立最佳設計參數,供未來設計感測器研究之參考,並提高微感測器在測試時的可靠度。
    本文利用ANSYS®有限元素分析軟體,來分析水聲微感測器之設計尺寸,受聲壓影響所造成的電阻值變化,並探討壓阻元件擺放位置與電壓輸出的靈敏度之關係。本文係以古典樑理論分析再與有限元素法分析的計算結果相比較,以驗證各結果的可靠性。由有限元素分析的結果顯示,矽薄膜的長度愈長而厚度愈薄,則微感測器的靈敏度愈高,當矽薄膜的長度為1636μm及厚度為5μm,其感測器表面上的壓阻元件,若令有效長度為160μm,寬度為4μm及厚度為0.3μm時,而非有效長度為20μm,其輸出電壓約為7.2mV,則靈敏度可達到14.4mV/V/kPa,可提升水聲微感測器之靈敏度。

    The purpose of this research is to provide an optimum design of acoustic micro-sensor developed by surface-micromachining in micro mechtronics. The principle of sensor is to use piezo-resistive sensing device (such as poly-silicon) built on membrane structure for receiving sound pressure to produce stress or strain to obtain corresponding resistive value by piezo-resistive effect. This research uses Wheatstone Bridge to transform acoustic signal into voltage signal by neglecting temperature effect.The optimum parameter of design acoustic micro-sensor can provide reference of research. An optimum parameter is obtained for sensor design in future, it may increase the reliability of sensor for testing.
    In this research, ANSYS® finite element method (FEM) soft is used to analyze the resistive variation caused by sound pressure of different dimension design of sensors and the relation between piezo-resistive arranged position and voltage output sensitivity is discussed. In this thesis, results of classical beam theory are compared with ANSYS® results to verify their reliability. The results of ANSYS® show that the thinner and longer the membrane is, the better the sensitivity of the sensor is. When silicon membrane length is 1636μm and thickness is 5μm, if the effective length of the piezo-resitive sensing device is set 160 μm with width 4μm and thickness 0.3μm , non-effective length is set 20μm and its voltage output is 7.2mV, then the snesor sensitivity can reach 14.4mV/V/kPa.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 ix 表目錄 xii 符號說明 xiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 5 1.4 論文架構 6 第二章 水聲感測器之設計原理 7 2.1 微壓力感測器之分類 7 2.2 傳統應變規與壓阻效應之基本原理 9 2.3 不同晶格方向的壓阻係數 13 2.4 水下聲響感測器之基本原理 20 2.5 壓阻元件分析 22 2.5.1 分析條件 22 2.5.2 計算單一壓阻元件的總電阻值 25 2.5.3 有效位置及非有效位置的壓阻元件 26 2.6 惠斯登電橋電路 29 2.7 靈敏度 31 第三章 感測器結構之有限元素分析 35 3.1有限元素之基本原理 35 3.2 ANSYS®分析之流程架構 39 3.2.1建立感測器之有限元素模型 41 3.2.2材料參數的選定 45 3.2.3 元素的選定 46 3.2.4邊界及靜力負載條件的設定 47 3.3壓阻元件之應力分析 49 3.3.1線性負載之壓阻元件應力分析 50 3.3.2改變有效薄膜邊界距離之壓阻元件應力分析 56 3.3.3改變壓阻元件幾何尺寸的有效長度及寬度之應力分析 58 3.4古典樑理論之分析 65 3.4.1有限元素法和樑理論結果與討論 71 第四章 結果分析與討論 77 4.1不同幾何尺寸的感測器之輸出電壓變化 77 4.2改變有效薄膜邊界距離之輸出電壓變化 82 4.3改變壓阻元件有效長度、寬度及非有效長度的輸出電壓變化83 4.3.1壓阻元件的非有效長度ιnon為60μm對輸出電壓之影響 85 4.3.2不同的非有效長度ιnon對輸出電壓之影響 90 4.4由古典樑理論所計算的輸出電壓 97 4.5討論 98 第五章 結論與未來展望 100 5.1結論 100 5.2未來展望 107 參考文獻 108 附錄A 112 附錄B 114 附錄C 117 附錄D 125 自述 128

    1.C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Physical Review,Vol. 94, pp. 42-49, 1954.
    2.C. S. Smith, “Semiconductor Sensors,” John Wiley & Sons Inc, New York, USA, 1994.
    3.F. J. Morin, T. H. Geballe and C. Herring, “Temperature Dependence of the Piezoresistance of High-Purity Silicon and Germanium,” Physical Review, Vol. 105, pp. 525-539, 1957.
    4.W. G. Pfann and R. N. Thurston , “Semiconducting Stress Transducers Utilizing the Transverse and Shear Piezoresistance Effects,” Journal of Applied Physics,Vol. 32, pp. 2008-2019, 1961.
    5.O. N. Tufte, P. W. Chapman and Donald Long, “Silicon Diffused Element Piezoresistive Diaphragms,” Journal of Applied Physics, Vol 33, pp. 3322-3327, 1962.
    6.O. N. Tufte and E. L. Stelzer, “Piezoresistive Properties of Heavily Doped n-Type Silicon,” Phys. Rev. 133, pp. A1705 - A1716, 1964.
    7.C.M. Gieles,“Subminiature silicon pressure sensor transducer,” Digest IEEE international solid-state circuits conference, Philadelphia, PA, Feb. 19-21, pp. 108-109 , 1969.
    8.S. K. Clark and K. D. Wise, “Pressure sensitivity in anisotropic ally etched thin diaphragm pressure sensors,” IEEE Transactions on electron devices, Vol. 26, No. 5, pp.1887-1896, 1979.
    9.K.E. Petersen, “Sillicon as a Mechanical material,” Proceeding of the IEEE, Vol.70, No. 5, pp. 420-457, 1982.
    10.Y.Z. Kanda “A Graphical Representation of the piezoresistance coefficients in silicon,” IEEE transactions on electron devices, Vol .29, No.1, 1982.
    11.H.Guckel and D. Burns, “Planr Processed Polysilicon Sealed Cavities for pressure Transducers Array,” IEDM, pp.223-225, 1984.
    12.P.J. French and A.G.R. Evans, “Polycrystalline silicon as a strain gauge material,” J. Phys. E 19, pp. 1055-1058, 1986.
    13.P.J. French and A.G.R. Evans, “Piezoresistance in polysilicon and its applications strain gauges,” Solid State Electronics, Vol. 32, pp. 1-10, 1989.
    14.S.Susumu and K. Shimaoka, “Surface Micromachined Micro Diaphragm Pressure Sensors,” Solid State Sensors and Actuators, pp. 188-191, 1991.
    15.V. Mosser and J. Suski, J. Goss, “Piezoresistive pressure sensors based on polycrystalline silicon,” Sensor and Actuators A, Vol. 28, pp. 113-132, 1991.
    16.E.Obermeier and P.Kopystynski, “Polysilicon as a material for microsensor applications,” Sensor and Actuators A, Vol. 30, pp. 149-155, 1992.
    17.V.A. Gridchin, V.M. Lubimslq and M.P. Sarina, “Piezoresistive properties of polysilicon films,” Sensors and Actuators A, Vol.49, pp. 67-72, 1995.
    18.L.W.Lin, H.C.Chu and Y.W.Lu, “A simulation program for the sensitivity and linearity of piezoresistive pressure sensors,” Vol. 8, pp. 514-522, 1999.
    19.T. Pancewicz , R Jachowicz, Z. Gniazdowski , Z. Azgin ,P.Kowalski , “The empirical verification of the FEM model of semiconductor pressure sensor,” Sensors and Actuators A , Vol. 76, pp. 260-265(6) ,1999.
    20.M.H.Bao and Y.P.Huang, “Batch derivation of piezoresistive coefficient tensor by matrix algebra,” J. Micromech. Microeng. 14, pp. 332-334, 2004.
    21.蓋永鋒,“微型壓阻式壓力感測器製作之研究”,國立成功大學工程科學研究所碩士論文,2000。
    22.陳丕宇,“應用MEMS 微型壓力感測器於風洞實驗之研究”,國立成功大學航空太空工程研究所碩士論文,2001。
    23.陳景欣,“體型加工微機械感測器之設計與類LIGA製程技術之研發”,國立成功大學機械工程學系博士班論文, 2001。
    24.李仲祥,“SOI晶片製作共振式水下聲響感測器之研究”,國立成功大學造船及船舶機械工程研究所碩士論文,2004。
    25.蔣信男,“矽質微型壓阻式壓力感測器之遲滯現象研究”,國立清華大學動力機械工程學系碩士論文, 2005。
    26.李協宇, “單次深層反應式離子蝕刻技術製造水下聲響感測元件之研究”, 國立成功大學造船及船舶機械工程研究所碩士論文, 2006。
    27.S. D.Senturia, “Microsystem Design,” Kluwer Academic Pub, 2000.
    28.T.R. Hsu, “Mems and Microsystems Design and Manufacture,” McGraw-Hill, 2001.
    29.楊龍杰,“認識微機電” ,滄海書局,民國90年。
    30.行政院國家科學委員會精密儀器發展中心,“微機電系統技術與應用” ,精密儀器發表中心,民國92年。
    31.Q.Wang and Wen H.Ko, “Modeling of touch mode capacitive sensors and diaphragms,” Sensors and Actuators A ,Vol. 75, pp. 230-241, 1999.
    32.周卓明,“壓電力學”,全華科技圖書股分有限公司,民國92年。
    33.吳勇箴, “剪力式壓電噴頭設計研究”, 國立成功大學航空太空工程研究所碩士論文,2006。
    34.J.D.Plummer, M. D.Deal and P.B.Griffin, “Silicon VLSI Technology,” Prentice Hall, 2000.
    35.M.H.Bao, “Micro Mechanical transducers Pressure Sensors,” Elsevier Science Ltd, 2000.
    36.林世政, “水下壓阻式微感測器特性測試及應用”,國立成功大學造船及船舶機械工程研究所碩士論文,2006。
    37.J.N.Reddy, “An Introduction to the Finite Element Method,” Mc-Graw Hill, third edition, 2006.
    38.李輝煌, “ANSYS工程分析基礎與觀念” , 高立圖書有限公司,民國94年。
    39.王柏村,“電腦輔助工程分析之實務與應用” ,全華科技圖書股分有限公司,民國94年。
    40.劉晉奇、褚晴暉, “有限元素分析與ANSYS的工程應用” ,滄海書局,民國95年。
    41.ANSYS. ANSYS Online Documentation,, SAS IP Inc., USA,ANSYS Inc. Coupled-Field Analyses, 2007.
    42.C.Liu, “Foundations of MEMS,"Pearson Prentice Hall , 2005.
    43.ANSYS. ANSYS Online Documentation, SAS IP Inc., USA,ANSYS Inc. Element Reference, 2007.

    無法下載圖示 校內:2014-06-30公開
    校外:2108-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE