| 研究生: |
羅信明 Lo, Hsin-Ming |
|---|---|
| 論文名稱: |
圖案化結構於發光二極體發光效率提升之研究 The enhancement in light-output efficiency of LEDs by patterned structures |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 圖案化發光二極體 |
| 外文關鍵詞: | patterned structures |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分,我們主要探討使用圖案化結構於發光二極體並提升光取出效率。首先使用將奈米等級金屬光罩轉印於四元紅光發光二極體製作表面圖案式結構,探討400-nm、600-nm、800-nm、1-μm、2-μm、3-μm和傳統的發光二極體的亮度效率差異,在20 mA 的電流注入時發現輸出效率分別為1.43, 1.42, 1.38, 1.35, 1.28, 1.22 and 1.16 mW。
第二部分,過去有人發現使用70nm的氧化銦錫於GaP的表面其電流擴散的效果與厚度約5000nm的Gap相同。於AlGaInP-based LEDs上要先生長一層p+-GaAs層才可以形成好的歐姆接觸。但是p+-GaAs層會吸光導致輸出功率下低。因此必須將p+-GaAs層更換成p+-GaP。使用MOCVD要生長高濃度的p+-GaP電洞層是很困難的。所以我們研發出鍍上氧化銦錫於GaP的表面再給予不同溫度,探討其歐姆接觸機制以及LED的特性是否有改變。本實驗中我們成功的將表面p-GaP變成p+-GaP的高濃度層後將氧化銦錫鍍於p+-GaP表面然後探討氧化銦錫在不同溫度時與p+-GaP的介面的傳輸機制。我們亦發現在 20 mA 時輸出功率分別為4.2 mW, 5.7 mW, 6.0 mW and 6.3 mW。
第三部分,我們使用不同深度的(1.2μm、1.4μm、1.7μm)錐形圖案化結構的成長於氮化鎵發光二極體並探討不同高度對亮度影響。另一方面使用雷射切割後側壁蝕刻並經過磷酸與硫酸的混酸分別蝕刻五分鐘以及二十分鐘分別形成高度0.98和1.9毫米像金字塔型的孔隙,因此我們發現孔洞愈高可以提升輸出功率。
The First part, we investigate the use of patterned structures in the light-emitting diodes and improve the light extraction efficiency .we applied simple, low-cost, mass-producible contact-transferred and mask-embedded lithography (CMEL) to texture p-GaP window layer for the fabrication of AlGaInP light-emitting diodes (LEDs) emitting at 612 nm. CMEL-400-nm LED, CMEL-600-nm LED, CMEL-800-nm LED, CMEL-1-μm LED, CMEL-2-μm LED, CMEL-3-μm and the conventional LED without CMEL, respectively. Under 20 mA current injections, it was found output powers were 1.43, 1.42, 1.38, 1.35, 1.28, 1.22 and 1.16 mW.
The second part, before found that a 70-nm-thick ITO layer could provide the same current spreading as a much thicker (i.e., 5000 nm) GaP layer. To use ITO as the current spreading layer for AlGaInP-based LEDs, it is necessary to insert a p+-GaAs cap layer to protect the AlGaInP from oxidation and also to form good ohmic contact. However, the opaque p+-GaAs cap layer could result in light absorption and reduced LED output power. This could be solved by replacing the p+-GaAs cap with a p+-GaP window layer. However, it is difficult to grow p+-GaP layer with a high hole concentration by MOCVD. However, the further study in post-ITO annealing at different temperatures and the contact mechanisms of ITO/p-GaP related to characteristics of LEDs have not been investigated. In this study, we report the conversion of p-GaP layer into p+-GaP layer and study the post-ITO-deposition annealing temperature effects on the contact mechanisms of ITO/p-GaP. AlGaInP-based LEDs with a p+-GaP window layer and an ITO contact were also fabricated. Detailed fabrication process and the electro-optical properties of the fabricated LEDs will be reported. Furthermore, the effects of thermal annealing after ITO deposition are also investigated.
We were also found that the 20 mA light output power were 4.2 mW, 5.7 mW, 6.0 mW and 6.3 mW, respectively.
The third part, we used InGaN/GaN LEDs grown on the different heights of the cone-shaped patterned sapphire substrates (CSPSS) were proposed and to explore the impact of different heights on the brightness. On another hand after used laser scribing and lateral etching by immersing the wafer in a mixture of H3PO4 and H2SO4 solution for 5 and 20 min, respectively and found lateral etching that pyramid-like air-void was formed with an average height of 0.98 and 1.9 μm, respectively. We were also found that the more holes higher can enhance output power.
Chapter 1:
[1] S. J. Chang, Y. K. Su, T. Yang, C. S. Chang, T. P. Chen and K. H. Huang, IEEE J. Quan. Electron. 38, 1390, 2002
[2] J. Rennie, M. Okajima, K. Itaya and G. Hatakoshi, IEEE J. Quan. Electron. 30, 2781, 1994
[3] C. S. Chang, Y. K. Su, S. J. Chang, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, IEEE J. Quantum Electon. 34, 77, 1998
[4] R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, M. G. Craford and V. M. Robbins, J. Electron. Mater. 20, 1125, 1991
[5] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, Appl. Phys. Lett. 84, 855, 2004
[6] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, J. Appl. Phys. 93, 9383, 2003.
[7] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee and D. S. Wuu, Appl. Phys. Lett. 80, 221101, 2005.
[8] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, IEEE Photon. Technol. Lett. 16, 1447, 2004.
[9] E. J. Hong, K. J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi and H. S. Kim, Solid-State Electron. 53, 1099, 2009
[10] S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science 272, 85, 1996
[11] M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick and C. G. Willson, J. Microlith. Microfab. Microsyst. 4, 011002, 2005
[12] D. B. Wolfe, J. C. Love, B. D. Gates, G. M. Whitesides, R. S. Conroy and M. Prentiss, Appl. Phys. Lett. 84, 1623, 2004.
[13] Y. L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, Appl. Phys. Lett. 81, 562, 2002
[14] E. J. Hong, K. J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi and G. Y. Jung, Mater. Sci. Eng. B 163, 170, 2009
[15] H. W. Huang, C. H. Lin, K. Y. Lee, C. C. Yu, J. K. Huang, B. D. Lee, H. C. Kuo, K. M. Leung and S. C. Wang, Semicond. Sci. Technol. 24, 085008, 20n, D. W. Treat, V. K. Yang and C. C. Dunnrowicz, IEEE Photon. Technol. Lett., Vol. 9, pp. 551-553, 1997.
[16] C. Y. Yeh, W. C. Lai, T. H. Hsueh, Y. Y. Yang, J. K. Sheu, S. P. Ringer and B. Gault, IEEE Photon. Technol. Lett. 21, 718, 2009.
[17] T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch and P. M. Petroff, Appl. Phys. Lett. 94, 023101, 2009.
[18] K. Bao, X. N. Kang, B. Zhang, T. Dai, C. Xiong, H. Ji, G. Y. Zhang and Y. Chen, IEEE Photon. Technol. Lett. 19, 1840, 2007.
[19] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei and J. K. Sheu, Appl. Phys. Lett. 91, 013504, 2007.
[20] H. K. Cho, J. Jang, C. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim and Y. H. Lee, Optics Express 14, 8654 (2006)
[21] S. Nakamura, T. Mukai and M, Senoh. “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes“, J. Appl. Phys., vol. 76, pp. 8189-8191, 1994
[22] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, “400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes”, IEEE J. Sel. Top. Quan. Electron., vol. 8, pp. 744-748, 2002.
[23] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, “Improved light-output and electrical performance of InGaN-based, light-emitting diode by microroughening of the p-GaN surfaqce“, J. Appl. Phys., vol. 93, pp. 9383-9385, 2003
[24] L. W. Wu, S. J. Chang, Y. K. Su, R. W. Chuang, Y. P. Hsu, C. H. Kuo, W. C. Lai, T. C. Wen, J. M. Tsai and J. K. Sheu, “In0.23Ga0.77N/GaN MQW LEDs with a low temperature GaN cap layer”, Solid State Electron., vol. 47, pp. 2027-2030, 2003.
[25] K. Tadatomo, H. Okagawa, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo and T. Taguchi, "High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic chemical vapor deposition", Phys. Stat. Sol. (a), vol. 188, pp. 121-125, 2001.
[26] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, L. W. Wu, C. H. Kuo, C. S. Chang and S. C. Shei, "Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs", J. Crystal Growth, vol. 231, pp. 466-470, 2004
[27] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, "Nitride-based LEDs fabricated on patterned sapphire substrates", Solid State Electron., vol. 47, pp. 1539-1542, 2003.
[28] J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee,“Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate”, IEEE Trans. Electron Dev., vol. 57, pp. 157-163, 2010
[29] H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and S. W. S. Chi, “Effects of lens shape on GaN grown on microlens patterned sapphire substrates by metallorganic chemical vapor deposition”, J. Electrochem. Soc., vol. 157, pp. H304-H307, 2010.
[30] E. H. Park, J. Jang, S. Gupta, I. Ferguson, C. H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode”, Appl. Phys. Lett., vol. 93, Art. 191103, 2008
[31] C. F. Lin, K. T. Chen, and K. P. Huang, ”Blue light-emitting diodes with an embedded native gallium oxide pattern structure”, IEEE Electron Dev. Lett., vol. 31, pp. 1431-1433, 2010.
[32] M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang and S. C. Huang, “High efficiency light emitting diode with anisotropically etched GaN-sapphire interface”, Appl. Phys. Lett., vol. 95, Art. 041109, 2009.
Chapter 2:
Reference
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys., Vol. 35, pp. L74-L76, 1997.
[2] Z. Fan, S. N. Mohammad, O. Aktas, A. E. Botchkarev, A. Salvador and H. Morkoc: Appl. Phys. Lett., Vol. 69, pp. 1229-1231, 1996.
[3]S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, Jpn. J. Appl. Phys., Vol. 31, pp. L139-L141, 1992.
[4] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki, and I. Akasaki, Jpn. J. Appl. Phys., Vol. 28, No.12, pp. L2112-L2114, 1989.
[5] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys., Vol. 34, No. 7A, pp. L797-L799, 1995.
[6] C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin and J. Webb, Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, 2002.
[7] J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, 2002.
[8] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “ Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth. Vol. 77, 188(1986)
[9] I.Adessida, A.Mahajan, E.Andideh, M.A.Kahn, D.T.Olson, andJ.N.Kuznia, Appl. Phys. Lett. 63 2777 (1993).
[10] S.J.Pearton, C.R.Abernathy, F.Ren, J.R.Lothian, .Vac.Sci.Technol. A 111772(1993).
[11] R.J.Shul, G.B.McClellan, S.A.Casalnuovo, D.J.Rieger, Appl. Phys. Lett.69 1119 (1996).
[12] D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng and S. H. Huang, “Deep etch of GaP using high-density plasma for light-emitting diode applications,” J. Vac. Sci. Technol. B, vol 20, p.902, 2002.
[13] VLSI製造技術 莊達人 編著 高立圖書有限公司
[14] H. Morkoc, “Nitride Semiconductors and Devices”, pp. 168, Springer, 1999.
[15] ESD Association Standard Test Method for electrostatic discharge sensitivity testing-Human Body Model (HBM) Component Level (ANSI/ESD5.1-2001).
Chapter 3:
[1] S. J. Chang, Y. K. Su, T. Yang, C. S. Chang, T. P. Chen and K. H. Huang, "AlGaInP/sapphire glue bonded light emitting diodes", IEEE J. Quan. Electron., Vol. 38, pp. 1390-1394, 2002.
[2] H. Sugawara, K. Itaya and G. Hatakoshi, “Hybrid-type InGaAlP/GaAs distributed Bragg reflectors for InGaAlP light-emitting diodes”, Jpn. J. Appl. Phys., Vol. 33, pp. 6195-6198, 1994.
[3] C. S. Chang, Y. K. Su, S. J. Chang, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, "High brightness AlGaInP 573nm light-emitting diode with a chirped multi-quantum barrier", IEEE J. Quan. Electon., Vol. 34, pp. 77-83, 1998.
[4] R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, M. G. Craford and V. M. Robbins, “The growth and properties of high-performance AlGaInP emitters using a lattice mismatched GaP window layer”, J. Electron. Mater. , Vol. 66, pp. 1125-1130, 1991.
[5] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, pp. 855-857, 2004.
[6] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, “Improved light-output and electrical performance of InGaN-based, light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., Vol. 93, pp. 9383-9385, 2003.
[7] C. C. Yang, R. H. Horng, C. E. Lee, W. Y. Lin, K. F. Pan, Y. Y. Su and D. S. Wuu, “Improvement in extraction efficiency of GaN-based light-emitting diodes with textured surface layer by natural lithography”, Jpn. J. Appl. Phys., Vol. 44, pp. 2225-2227, 2005.
[8] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, "Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers", IEEE Photon. Technol. Lett., Vol. 16, pp. 1447-1449, 2004.
[9] E. J. Hong, K. J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi and H. S. Kim, “Effect of nano-patterning of p-GaN cladding layer on photon extraction efficiency”, Solid-State Electron., Vol. 53, pp. 1099-1102, 2009.
[10] C. F. Lai, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, W. Y. Yeh and J. Y. Chi, “Anisotropy of light extraction from two-dimensional photonic crystal light-emitting diodes”, Appl. Phys. Lett., Vol. 91, Article 123117, 2007
[11] I. B. Divliansky, A. Shishido, I. C. Khoo, T. S. Mayer, D. Pena, S. Nishimura, C. D. Keating and T. E. Mallouk, “Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe”, Appl. Phys. Lett., Vol. 79, pp. 3392-3394, 2001
[12] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template”, Appl. Phys. Lett., Vol. 93, Article 081108, 2008.
[13] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Science, Vol. 272, pp. 85-87, 1996.
[14] M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick and C. G. Willson, “Nanofabrication with step and flash imprint lithography”, J. Microlith. Microfab. Microsyst., Vol. 4, Article 011002, 2005.
[15] D. B. Wolfe, J. C. Love, B. D. Gates, G. M. Whitesides, R. S. Conroy and M. Prentiss, “Fabrication of planar optical waveguides by electrical microcontact printing”, Appl. Phys. Lett., Vol. 84, pp. 1623-1625, 2004.
[16] Y. L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics”, Appl. Phys. Lett., Vol. 81, pp. 562-564, 2002
[17] Y. C. Lee and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching”, J. Micromech. Microeng., Vol. 18, Article 075013, 2008
[18] G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong nd S. Williams, “Vapor-Phase Self-Assembled Monolayer for Improved Mold Release in Nanoimprint Lithography”, Langmuir, Vol. 21, pp. 1158-1161, 2005.
[19] H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal”, Appl. Phys. Lett., Vol. 84, pp. 457-459, 2004.
Chapter4:
[1] S. J. Chang, Y. K. Su, T. Yang, C. S. Chang, T. P. Chen and K. H. Huang, "AlGaInP/sapphire glue bonded light emitting diodes", IEEE J. Quan. Electron., vol. 38, pp. 1390-1394, 2002.
[2] H. Sugawara, K. Itaya and G. Hatakoshi, “Hybrid-type InGaAlP/GaAs distributed Bragg reflectors for InGaAlP light-emitting diodes”, Jpn. J. Appl. Phys., vol. 33, pp. 6195-6198, 1994.
[3] C. S. Chang, Y. K. Su, S. J. Chang, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, "High brightness AlGaInP 573nm light-emitting diode with a chirped multi-quantum barrier", IEEE J. Quan. Electon., vol. 34, pp. 77-83, 1998.
[4] G. B. Stringfellow and M. G. Craford, “High brightness light-emitting diodes”, in Semiconductors and Semimetals. New York: Academic, 1997, vol. 48.
[5] I. Schnitzer, E. Yablonovitch, C. Caneau and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures”, Appl. Phys. Lett., vol. 62, pp. 131-133, 1993.
[6] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett., vol. 77, pp. 1903-1904, 2000.
[7] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by micro roughening of the p-GaN surface”, J. Appl. Phys., vol. 93, pp. 9383-9385, 2003.
[8] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, "Nitride-based LEDs with 800oC-grown p-AlInGaN/GaN double cap layers", IEEE Photon. Technol. Lett., Vol. 16, pp. 1447-1449, 2004.
[9] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford and A. S. H. Liao, “Two fold efficiency improvement in high-performance AlGaInP light-emitting diodes in the 550-620 nm spectral region using a thick GaP window layer”, Appl. Phys. Lett., vol. 61, pp. 1045-1047, 1992.
[10] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., vol. 39, pp. 1439-1443, 2003.
[11] Y. C. Lin, S. J. Chang, Y. K. Su, C. S. Chang, S. C. Shei, J. C. Ke, H. M. Lo, S. C. Chen and C. W. Kuo, "High power nitride based light emitting diodes with Ni/ITO p-type contacts", Solid State Electron., vol. 47, pp. 1565-1568, 2003.
[12] D. V. Morgan, I. M. Al-Ofi and Y. H. Aliyu, “Indium tin oxide spreading layers for AlGaInP visible LEDs”, Semicond. Sci. Technol., vol. 15, pp. 67-72, 2000.
[13] Y. H. Aliyu, D. V. Morgan, H. Thomas and S. W. Bland, “AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO)”, Electron. Lett., vol. 31, pp. 2210-2212, 1995.
[14] M. C. Wu, J. F. Lin, M. J. Jou, C. M. Chang and B. J. Lee, "High reliability of AlGaInP LED’s with efficient transparent contacts for spatially uniform light emission", IEEE Electron. Dev. Lett., vol. 16, pp. 482-484, 1995.
[15] C. H. Yen, Y. J. Liu, K. H. Yu, P. L. Lin, T. P. Chen, L. Y. Chen, T. H. Tsai, N. Y. Huang, C. Y. Li and W. C. Liu, “On an AlGaInP-based light-emitting diode with an ITO direct ohmic contact structure”, IEEE Electron. Dev. Lett., vol. 30, pp. 359-361, 2009.
[16] Y. J. Liu, C. H. Yen, K. H. Yu, P. L. Lin, T. H. Tsai, T. Y. Tsai and W. C. Liu, “Characteristics of an AlGaInP-based light-emitting diode with an indium-tin-oxide (ITO) direct ohmic contact structure”, IEEE J. Quan. Electron, vol. 46, pp. 246-252, 2010.
[17] M. V. Tagare, T. P. Chin and J. M. Woodall, “Nonalloyed ohmic contacts to heavily Be-doped GaP and InxGa1-xP”, Appl. Phys. Lett., vol. 68, pp. 3485-3487, 1996.
[18] E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine and S Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications”, Semicond. Sci. Technol., vol. 23, Art. no. 035001, 2008.
[19] A. E. Von Neide, S. J. Pearton, W. S. Hobson, and C. R. Abernathy, “Interaction of Be and O in GaAs”, Appl. Phys. Lett., vol. 54, pp. 17-19, 1989.
[20] J. F. Mouder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray photoelectron Spectroscopy, 2nd ed., edited by J. Chastain (Perking-Elmer Corporation, Eden Prairie, 1992).
[21]C. D. Wagner, J. F. Mouder, L. E. Davis and W. M. Riggs, Handbook of X-ray photoelectron Spectroscopy, 1st ed., edited by E. Muilenberg (Perking-Elmer Corporation, Physical Electronics Division, Eden Prairie, 1992).
Chapter5:
[1] S.J. Chang, Y.C. Lin, Y. K. Su, C. S. Chang, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu,“Nitride-based LEDs fabricated on patterned sapphire substrate,”Solid-State Electron., vol. 47, pp.1539-1542, 2003.
[2] T. Mukai, K. Takekawa, and S. Nakamura,“InGaN-based blue light-emitting diodes grown on epitaxial laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol.37, pp.L839-L841, 1998.
[3] I. Kidoguchi, A. lshibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films,” Appl. Phys. Lett., vol.76, pp. 37683770, 2000.
[4] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphire substrates,”Mater. Sci. Eng. B, vol. 122, pp. 184–187, 2005.
[5] W.K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin,“Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,”IEEE J. Quantum Electron., vol. 41, pp. 1403-1409, 2005.
[6] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-Based Light Emitting Diodes,” J. Electrochem. Soc., vol. 153, pp. G765-G770, 2006.
[7] H. C. Lin, H. H. Liu, G. Y. Lee, J. I. Chyi, C. M. Lu, C. W. Chao, T. C. Wang, C. J. Chang, and S. W. S. Chi, “Effects of lens shape on GaN grown on microlens patterned sapphire substrates by Metallorganic Chemical Vapor Deposition,”J. Electrochem. Soc., vol.157, pp. H304-H307, 2010.
[8] J. B. Kim, S. M. Kim, Y. W. Kim, S. K. Kang, S. R. Jeon, N. Hwang, Y. J. Choi, and C. S. Chung, “light extraction enhancement of GaN-based light-emitting diodes using volcano-shaped patterned sapphire substrates,”Jpn. J. Appl. Phys., vol.49, pp.042102-1-042102-4, 2010.
[9] J. H. Lee, J. T. Oh, Y. C. Kim, and J. H. Lee,“Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire,” IEEE Photon. Technol. Lett., vol.20, pp. 1563-1565, 2008.
[10] J. H. Lee, D. Y. Lee, B. W. Oh, and J. H. Lee,“Comparison of InGaN-based LEDs grown on conventional sapphire and cone-sahpe-patterned sapphire substrate,” IEEE Trans. Electron Devices, vol. 57, pp. 157–163, 2010.
[11] N. Okada, T. Murata, K. Tadatomo, H. C. Chang, and K. Watanabe,“Growth of GaN layer and characterization of light-emitting diode using random-cone patterned sapphire substrate,” Jpn. J. Appl. Phys.,vol.48, pp.122103-1-122103-4, 2009.
[12] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. C. Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, "Highly reliable nitride based LEDs with SPS+ITO upper contacts", IEEE J. Quan. Electron., Vol. 39, pp. 1439-1443, 2003.
[13] W. C. Lai, L. C. Peng, M. N. Chang, S. C. Shei, Y. P. Hsu, and J. K. Sheu, “GaN-Based LED with embedded microlens-like structure,” J. Electrochem. Soc., vol.156, pp. 976–978, 2009.
校內:2016-08-19公開