簡易檢索 / 詳目顯示

研究生: 林天鈞
Lin, Tien-Chun
論文名稱: 前導物之粒徑對由Gibbsite獲得alph-Al2O3過程之影響
Particle Size Effect of Precursor on Phase Transformation of Gibbsite to a-Al2O3
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 珠磨處理相轉換氧化鋁
外文關鍵詞: chi alumina, perl mill, phase transformation
相關次數: 點閱:82下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Gibbsite由於價格低廉,一直是工業上生產氧化鋁產品的重要原料。因在相變成為a-Al2O3的過程中粒體會延續gibbsite的外型,加上市面上所販售的gibbsite粒子在um級以上,因此很難由之獲得粒子< 1um的a-Al2O3粉末。本研究藉由gibbsite相變而來的x-Al2O3過渡相經珠磨處理(perl mill)降低其凝聚狀態,將其分散於以硝酸調整至pH=4的溶液中,經自然重力分級處理(gravity settling)得到三種不同粒徑的x-Al2O3粉末。再將此三種粉末分別依不同的熱處理條件進行煆燒,獲得三種x-及k-Al2O3混和粉末。最後對此六種粉末進行XRD、TEM、DTA、雷射粒徑等儀器觀察。企圖以此瞭解前導物之粒徑不同對其相變成a-Al2O3的影響,探究由gibbsite生產奈米級a-Al2O3的可行性。研究結果顯示:

    (1)同一晶徑x-或k-Al2O3晶粒所構成之粒體,其粒徑 不同,相變溫度不同。x-Al2O3粒徑越小,其相變溫度越低且越明顯。

    (2)經珠磨處理後的x-Al2O3,其x-至k-相變溫度可能在700~800oC間發生,或更低,且其a-Al2O3相轉換量無法超過85%。

      In this study, the particle size effect of precursor on phase transformation of gibbsite to a -Al2O3 was investigated. Gibbsite, as the most important raw material for producing alumina powders, undergoes phase transformation of χ-, κ-, and then to obtain a-Al2O3 during thermal treatments. The phase transformation is characterized by preserving gibbsite skeleton for the transformed a-Al2O3 particles, being of pseudomorphic transformation. Thus it is difficult to manufacture a-Al2O3 powders with particle sizes smaller than 1um, because the size of gibbsite particles found in market is generally > 1 um. Therefore, it is no a-Al2O3 powders with particle size <1um of a-Al2O3 in the market.
      In this study, in order to acquire precursors with sizes <1um that could be used for producing a-Al2O3 powders with particle size <1um, gibbsite-derived x-Al2O3 powders were treated by perl mill and subsequently classified by gravity settling into three sizes. After that, these three powder samples were calcined with different thermal conditions to observe the phase transformation behaviors using XRD, DTA, TEM, and LSD techniques. The results showed:
    (1) different x-or k-Al2O3 particle sizes consisting of the same crystallite size have different transformation temperatures. The smaller the x-Al2O3 particles are, the lower and more obvious the transformation temperatures are.
    (2) After perl milling, the transformation temperature of x-Al2O3 to k-Al2O3 may occur during 700~800oC, or lower. Besides, the a-Al2O3 formation in this study can not exceed 85%.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 理論基礎與前人研究 3 2.1 Gibbsite與其過渡相的結構 3 2.1.1 Gibbsite的結構 3 2.1.2 x-Al2O3的結構 4 2.1.3 k-Al2O3的結構 4 2.1.4 a-Al2O3的結構 5 2.2 Gibbsite可能存在的相轉換路徑 11 2.3 Gibbsite →x- → k- → a-Al2O3存在假型相轉換 11 2.4 k- → a-Al2O3相轉換過程 12 第三章 實驗方法與步驟 14 3.1 實驗構想與設計 14 3.2 實驗步驟與流程 14 3.3 特性分析 15 3.3.1 粉末結晶相分析 15 3.3.2粉末半峰寬量測及晶徑分析與計算 15 3.3.3 BET比表面積測定 16 3.3.4 粒徑分佈量測 16 3.3.5 DTA熱差分析 16 3.3.6 a-Al2O3生成量之定量分析 16 3.3.7 顯微結構分析 17 第四章 結果與討論 20 4.1以gibbsite製備x-Al2O3粉末 20 4.1.1 熱處理對gibbsite →x-Al2O3相轉換的影響 20 4.1.2 x-Al2O3經珠磨(Perl mill)後的變化 20 4.1.3 x-Al2O3沈降分級處理 28 4.1.4 分級x- Al2O3之熱處理 35 4.2 x-Al2O3煆燒粉之獲得 35 4.3 x-Al2O3煆燒粉之特性分析 44 4.3.1 DTA熱差分析 44 4.3.2 XRD繞射分析 44 4.3.3 顯微影像觀察 44 4.4 綜合討論 50 第五章 結論 52 參考文獻 53 Appendices 56

    1.M. Ciftcioglu and M. J. Mayo, “Processing of Nanocrystalline Ceramics,” P. 77-86 in Superplasticity in Metals, Ceramics, and Intermetallics (Mater. Res. Soc. Sump. Proc. 196), Edited by M. J. Mayo, M. Kobayashi, and J. Wadsworth, Pittsburgh, MRS (1990).

    2.T. G. Nieh, C. M. McNally, and J. Wadsworth, “Superplasticity in Intermetallic Alloys and Ceramics”, JOM, 41, 31-35 (1989).

    3.M. Uchic, H. H. Hofler, W. J. Flick, R. Tao, P. Kurath, and R. S. Averback, “Sinter-Forging of Nanophase TiO2,” Scripta Metall. Mater., 26,791-796 (1992).

    4.溫惠玲,由Boehmite製得之氧化鋁粉末的theta- → alpha-Al2O3相轉換,國立成功大學資源工程研究所,博士論文,中華民國89年1月。

    5.O. Glemser, G. Riech and Z. Angew. Chem. 68, 182 (1956).

    6.D. J. Stirland, A. G. Thomas and N. C. Moore, Trans. Brit. Ceram. Soc. 57, 69-84 (1958).

    7.C. S. John, N. C. M. Alam, and G. R. Hays, “Characterization of Transitional Alumina by Solid-State Magic Angel Spinning Aluminium NMR,” Appl. Catal., 6, 341 (1983)

    8.K. Wefers and G. M. Bell, “Oxides and Hydroxides of Alumina,” Technical Paper No.19, Alcoa Research Laboratories (1972).

    9.黃啟祥、林江財,氧化鋁,陶瓷技術手冊(下),683-685,中華民國產業科技發展協進會,與中華民國粉末冶金協會出版。民國83年7月。

    10.B. C. Lippens and J. J. Steggerda, “Active Alumina” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. GLinsen Ed., Academic Press, New York, 171 (1970).

    11.H. Saalfeld, “The Sturcture of Gibbsite and the Intermediate Products of Its Dehydration,” N. Jb. Miner. Abh., 95, 1-87 (1960).

    12.H. D. Megraw, Crystal Structures: A Working Approach. Saunders, Philadelphia, London, Toronto (1973).

    13.K. Wefers, “Nomenclature, Preparation, and Properties of Aluminum Oxides, Oxide Hydroxides, and Trihydroxides,” in Alumina Chemicals, L. D. Hart Ed., Am. Ceram. Soc., Ohio (1990).

    14.H. C. Stumpf, A. S. Russel, J. W. Newsome, and C. M. Tucker, “Thermal Transformations of Aluminas and Alumina Hydrates,” Ind. Eng. Chem., 42, 1398-1403 (1950).

    15.G. W. Brindley and J. O. Choe, “The Reaction Series, Gibbsite→ Chi Alumina→ Kappa Alumina→ Corundum,” Am. Mineral., 46, 771 (1961).

    16.P. Liu and J. Skogsmo, “Space-Group Determination and Structure Model for - Al2O3 by Convergent-Beam Electron Diffraction (CBED),” Acta Cryst., B47, 425-433 (1991).

    17.H. L. Gross and W. Mader, “On the Crystal Structure of -alumina,” Chem. Commun., 1, 55-56 (1997).

    18.Y. Yourdshahyan, C. Ruberto, M. Halvarsson, L. Bengtsson, V. Langer, B. I. Lundqvist, S. Ruppi, and U. Rolander, “Theoretical Structure Determination of a Complex Material:- Al2O3,” J. Am. Ceram. Soc., 82, [6] 1365-80 (1999).

    19.Y. Chaing, D. P. Birnie III, and W. D. Kingery, Physical Ceramics – Principles for Ceramic Science and Engineering, Wiley, New York (1997).

    20.J. H. de Boer, J. M. H. Fortuin, and J. J. Steggerda, “The Dehydration of Alumina Hydrates,” Proc. Kon. Ned. Akad. Werensch., Amsterdam, B57, 170-180 (1954).

    21.R. Tertian and D. Papée, “Thermal and Hydrothermal Transformations of Alumina,” J. Chem. Phys., 55, 341-353 (1958).

    22.G. W. Brindley and J. O. Choe, “The Reaction Series, Gibbsite→ Chi Alumina→ Kappa Alumina→ Corundum,” The Am. Mineral., 46, 771 (1961).

    23.J. F. Brown, D. Clark, and W. W. Elliott, “Thermal Decomposition of the Alumina Trihydrate, Gibbsite,” J. Chem. Soc. (London), 84-88 (1953).

    24.Victoria J. Ingram-Jones, Robert C. T. Slade, Thomas W. Davies, Jennifer C. Southern and Sylvain Salvador, “Dehydroxylation sequences of gibbsite and boehmite: study of differences between soak and flash calcinations and of particle-size effects,” J. Mater. Chem., 6 (1), 73-79 (1996).

    25.C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy, Wiley, New York (1993).

    26.H. Achenbach, “Thermal Decomposition of Synthetic Hydrargillite (Gibbsite),” Chem. Edre., 6, 307-356 (1931).

    27.V. R. Damerell, F. Hovorka, and W. E. White, “Surface Chemistry of Hydrates. II. Decomposition Without Lattice Rearrangments,” J. Phys. Chem., 36, 1255-1267 (1932).

    28.黃紘筠,前導物為gibbsite的kappa- →alpha-Al2O3相轉換晶徑變化與粒體發育現象,國立成功大學資源工程研究所,碩士論文,中華民國93年7月。

    29.Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London (1978).

    下載圖示 校內:2006-07-05公開
    校外:2006-07-05公開
    QR CODE