| 研究生: |
歐譯璟 Ou, Yi-Jing |
|---|---|
| 論文名稱: |
運用計算生物學方法將A型流感與廣效型抗體的基因序列轉譯為功能性試驗與動物實驗之數據 Translating genomic sequences into functional assays and in-vivo experiments of universal antibodies against influenza A virus |
| 指導教授: |
楊士德
Yang, Hsih-Te |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 醫學資訊研究所 Institute of Medical Informatics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 計算生物學 、蛋白質對接 、基因序列 、抗體藥物開發 、A型流感病毒 |
| 外文關鍵詞: | Computational Biology, Protein Docking, Genomic Sequence, Antibody Drug Discovery, Influenza A Virus |
| 相關次數: | 點閱:131 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們運用計算生物學方法,將線上資料庫裡的基因序列「轉譯」為抗體對抗A型流感病毒的功能性試驗與動物實驗之數據。
我們以流感病毒作為目標,試著去預測抗體中和病毒的能力,並希望能藉此加速抗體藥物的開發。我們使用同源建模的方式,從基因序列預測病毒與抗體的蛋白質結構,並使用ZDOCK來將預測得知的蛋白質結構進行對接。最後將對接完的結果進一步優化,預測出兩者之間的結合能量。
我們將此結果與其他傑出期刊的論文做比較,得到一些不錯的成果,足以證明我們的方法是有用的且可行的新方法來輔助抗體藥物的開發。
In this research, we use our computational approach to "translate" genomic sequences from online databases into functional assay and in-vivo experiments of antibodies against influenza virus.
We take influenza virus as our target, trying to predict the efficacy of neutralization antibodies, hoping to accelerate the process of antibody drug discovery. By using homology modeling, we can predict the 3D structure of antibody and virus protein from genomic sequences. After protein structure prediction for both antibody and virus, we use ZDOCK to perform docking between these two proteins. Finally, we calculate the binding energy score with further refinement, and correlate our computational outcome with experimental results from some outstanding journals.
The results we get are pretty well and suffice to show that our approach is useful. All the work we have done is providing an innovative way for researchers to develop antibody drug for clinic.
1. Ghedin, E., et al., Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature, 2005. 437(7062): p. 1162-6.
2. Tong, S., et al., A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4269-74.
3. Tong, S., et al., New world bats harbor diverse influenza A viruses. PLoS Pathog, 2013. 9(10): p. e1003657.
4. Stegmann, T., Membrane fusion mechanisms: the influenza hemagglutinin paradigm and its implications for intracellular fusion. Traffic, 2000. 1(8): p. 598-604.
5. Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 2000. 69: p. 531-69.
6. Edelman, G.M., Antibody structure and molecular immunology. Science, 1973. 180(4088): p. 830-40.
7. Maverakis, E., et al., Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review. J Autoimmun, 2015. 57: p. 1-13.
8. Hirst, G.K., The Quantitative Determination of Influenza Virus and Antibodies by Means of Red Cell Agglutination. J Exp Med, 1942. 75(1): p. 49-64.
9. Rowe, T., et al., Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol, 1999. 37(4): p. 937-43.
10. Benson, D.A., et al., GenBank. Nucleic Acids Res, 2013. 41(Database issue): p. D36-42.
11. Bogner, P., et al., A global initiative on sharing avian flu data. Nature, 2006. 442(7106): p. 981-981.
12. RCSB Protein Data Bank. Available from: http://www.rcsb.org/pdb/.
13. Berman, H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235-42.
14. Sussman, J.L., et al., Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 6 Pt 1): p. 1078-84.
15. Hillisch, A., L.F. Pineda, and R. Hilgenfeld, Utility of homology models in the drug discovery process. Drug Discov Today, 2004. 9(15): p. 659-69.
16. Discovery Studio Modeling Environment. Dassault Systèmes BIOVIA.
17. Fasnacht, M., et al., Automated antibody structure prediction using Accelrys tools: results and best practices. Proteins, 2014. 82(8): p. 1583-98.
18. Almagro, J.C., et al., Second antibody modeling assessment (AMA-II). Proteins, 2014. 82(8): p. 1553-62.
19. Antibody Modeling Assessments. Available from: http://www.3dabmod.com/.
20. Lee, H., et al., GalaxyGemini: a web server for protein homo-oligomer structure prediction based on similarity. Bioinformatics, 2013. 29(8): p. 1078-80.
21. SeokLab. GalaxyGemini.
Available from: http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=GEMINI.
22. Wodak, S.J. and J. Janin, Computer analysis of protein-protein interaction. J Mol Biol, 1978. 124(2): p. 323-42.
23. Chen, R., L. Li, and Z. Weng, ZDOCK: an initial-stage protein-docking algorithm. Proteins, 2003. 52(1): p. 80-7.
24. Chen, R. and Z. Weng, Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins, 2002. 47(3): p. 281-94.
25. Pierce, B.G., et al., ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 2014. 30(12): p. 1771-3.
26. Pierce, B. and Z. Weng, ZRANK: reranking protein docking predictions with an optimized energy function. Proteins, 2007. 67(4): p. 1078-86.
27. Goh, C.S., D. Milburn, and M. Gerstein, Conformational changes associated with protein-protein interactions. Curr Opin Struct Biol, 2004. 14(1): p. 104-9.
28. Mashiach, E., R. Nussinov, and H.J. Wolfson, FiberDock: Flexible induced-fit backbone refinement in molecular docking. Proteins, 2010. 78(6): p. 1503-19.
29. Mashiach, E., R. Nussinov, and H.J. Wolfson, FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res, 2010. 38(Web Server issue): p. W457-61.
30. Mashiach, E., R. Nussinov, and H.J. Wolfson. FiberDock.
Available from: http://bioinfo3d.cs.tau.ac.il/FiberDock/index.html.
31. Whittle, J.R., et al., Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci U S A, 2011. 108(34): p. 14216-21.
32. Ekiert, D.C., et al., A highly conserved neutralizing epitope on group 2 influenza A viruses. Science, 2011. 333(6044): p. 843-50.
33. Ekiert, D.C., et al., Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature, 2012. 489(7417): p. 526-32.
34. Krause, J.C., et al., A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. J Virol, 2011. 85(20): p. 10905-8.
35. Wrammert, J., et al., Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med, 2011. 208(1): p. 181-93.
36. Shen, M.Y. and A. Sali, Statistical potential for assessment and prediction of protein structures. Protein Sci, 2006. 15(11): p. 2507-24.
37. Hong, M., et al., Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol, 2013. 87(22): p. 12471-80.