簡易檢索 / 詳目顯示

研究生: 張朵頤
Chang, Duo-Yi
論文名稱: 資料關聯度分析與預測方法於航空產業之應用研究
Data Correlation Analysis and Prediction for Air Traffic Business
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 類神經網路模糊控制理論股價預測
外文關鍵詞: Neural network, Fuzzy control system, Stock forecast
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 每種預測模式皆有其數學背景,各模式之間並沒有絕對的好壞,而是取決於資料的類型,透過觀察資料的趨勢去選擇一個較合適的模型。預測股市相關數據需要龐大的歷史資料以及動態的預測模型,因此,本研究使用倒傳遞類神經網路(Backpropagation Neural Network)預測個股的五日帄均開盤價、最高價、最低價及收盤價,並推測每日的開盤、最高、最低及收盤價。利用模糊決策系統(Fuzzy Decision System)並考量成交量變數判斷其交易意願指標,進而計算出預定買價及預定獲利賣價,接著以月均線及季均線為判斷進場之時機,進行實際買賣操作。
    在航空運輸產業股中選擇具代表性的長榮航及華航進行預測及操作,發現皆有不錯的獲利。推廣至運輸產業股的陽明及裕民,其趨勢皆是下跌的時段也不至於虧損。最後,再測詴操作非運輸產業股的中鋼也有不錯的表現。因此,本研究提出的方法可以決定個股的進出場價位及時機,進而獲得穩定的利潤並有效降低虧損之風險。

    This study proposes a back-propagation neural network approach to estimate the 5-day MAs(moving averages) of Open, High, Low, and Close prices, and then Open, High, Low and Close prices of each day can be predicted. Considering the trading volume, a fuzzy control system which can simulate behavior of human decision making is used to determine the degree of trading intention. As a result, the bid and ask prices are able to be predicted according to predicted prices and trading intention. Moreover, the 20-day MA and 60-day MA are considered as restrictions to obtain an appropriate operating day, and a profitable stock is selected and operated to test the gain ability of the proposed predicting system. From the operated results, the proposed method can make stable gains continuously, and reduce the risk of loss efficiently.

    目 錄 摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 第一章 緒論 1 1.1 研究背景與動機 2 1.2 文獻回顧 4 1.3 本文架構 6 第二章 數據分析方法介紹 7 2.1 預測 7 2.1.1 預測概述 7 2.1.2 預測方法 8 2.2 類神經網路 11 2.2.1 類神經網路架構與分類 12 2.3小結 15 第三章 研究方法與架構 18 3.1 研究流程 18 3.2 倒傳遞類神經網路 20 3.2.1 倒傳遞類神經網路的架構與模擬訓練 21 3.2.2 快速訓練倒傳遞類神經網路的演算法 24 3.2.3 改善網路廣義化 28 3.2.4 模擬數據結果與討論 30 3.3 模糊控制理論 35 3.3.1 模糊邏輯與模糊推論 36 3.3.2 模糊控制器組成與設計步驟 37 第四章 系統模擬與分析 45 4.1 實際操作 45 4.1.1 操作流程 45 4.1.2 限制條件 47 4.2 個股之實際操作 48 4.4.1 航空運輸產業之個股預測 48 4.4.2 運輸產業之個股預測 55 4.4.3 非運輸產業之個股預測 58 4.3 實驗結果討論 60 第五章 結論與建議 62 參考文獻 64

    Archer, B.H., 1980, “Forecasting Demand: Quantitative and Intuitive Techniques”, International Journal of Tourism Management, Vol. 1, No. 1, pp. 5-12.
    Bernstein, G.L., 1984, “The Art of Using Forecasts Effectively”, Directors & Boards, Vol. 8, pp. 23-26.
    Biacino, L.; Gerla, G., 2002 , “Fuzzy logic, continuity and effectiveness”. Archive for Mathematical Logic 41 (7): 643–667.
    Boyacioglu, M. A., and Avci, D., 2010, “An Adaptive Network-Based Fuzzy Inference System (ANFIS) for the prediction of stock market return: The case of the Istanbul Stock Exchange”, Expert Systems with Applications, 37(12), pp. 7908-7912.
    Chao, H.W., 2004, “Predicting Tourism Demand Using Fuzzy Time Series and Hybrid Grey Theory”, International Journal of Tourism Management, Vol. 25, No.3, pp. 367-374.
    Chan, D.Y.C., Prager, D., 1994. “Analysis of time series by neural networks”. Proceedings of the IEEE International Joint Conference on Neural Networks, 1, pp. 355–360.
    Chen, Y., Mabu, S., and Hirasawa, K., 2010, “A model of portfolio optimization using time adapting genetic network programming”, Computers & Operations Research, 37(10), pp. 1697-1707.
    Chuan Wang, Principe, J.C., 1999 , “Training neural networks with additive noise in the desired signal”, Neural Networks, IEEE Transactions on, pp. 1511 – 1517.
    Dohi, T., Hatakeyama, M., and Osaki, S., 1997, “On the network size for neuro-based stock option forecasting system: Experimental evaluation”, Stochastic Modelling in Innovative Manufacturing, 445, pp. 337-347.
    Ezzamel, M., Mar-Molinero, C., and Beech, A., 1987, “On the Distributional Properties of Financial Ratios”, Journal of Business Finance & Accounting, 14(4), pp. 463-481.
    Hopfield, J. J., 1980, “The Energy Relay - A Proofreading Scheme Based on Dynamic Cooperativity and Lacking All Characteristic Symptoms of Kinetic Proofreading in DNA-Replication and PROTEIN-Synthesis”, Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 77(9), pp. 5248-5252.
    Hestenes, Magnus R. Stiefel, Eduard , 1952 , “Methods of Conjugate Gradients for Solving Linear Systems”. Journal of Research of the National Bureau of Standards 49
    Huang, W., Lai, K. K., Nakamori, Y., Wang, S. Y., and Yu, L., 2007, “Neural networks in finance and economics forecasting”, International Journal of Information Technology & Decision Making, 6(1), pp. 113-140.
    Hung, J. C., 2009, “A Fuzzy Asymmetric GARCH model applied to stock markets”, Information Sciences, 179(22), pp. 3930-3943.
    Jalili-Kharaajoo, M., 2004, “Stock trend prediction using neurofuzzy predictors based on brain emotional learning algorithm”, Artificial Intelligence and Soft Computing - Icaisc 2004, 3070, pp. 308-313.
    Kenneth Levenberg , 1944 , “A Method for the Solution of Certain Non-Linear Problems in Least Squares”. The Quarterly of Applied Mathematics 2: 164–168.
    Kohara, K., Fukuhara, Y., and Nakamura, Y., 1996, “Selective presentation learning for neural network forecasting of stock markets”, Neural Computing & Applications, 4(3), pp. 143-148.
    Lee, S.Y., 2002, “The Suitability of Short-term Sales Forecasting Using Grey Theory”, Master Thesis of Institute of Information Engineering, I-Shou University.
    Leigh, W., Purvis, R., and Ragusa, J. M., 2002, “Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: a case study in romantic decision support”, Decision Support Systems, 32(4), pp. 361-377.
    Lin, C. T., and Yeh, H. Y., 2009, “Empirical of the Taiwan stock index option price forecasting model - applied artificial neural network”, Applied Economics, 41(15), pp. 1965-1972.
    Lu, C. J., 2010, “Integrating independent component analysis-based denoising scheme with neural network for stock price prediction”, Expert Systems with Applications, 37(10), pp. 7056-7064.
    Majhi, R., Panda, G., and Sahoo, G., 2009, “Development and performance evaluation of FLANN based model for forecasting of stock markets”, Expert Systems with Applications, 36(3), pp. 6800-6808.
    McCulloch, W. S., and Pitts, W., 1990, “A Logical Calculus of The Ideas Immanent in Nervous Activity (Reprinted From Bulletin of Mathematical Biophysics, VOL 5, PG 115-133, 1943)”, Bull. Math. Biol., 52(1-2), pp. 99-115.
    Michaelj, A. Berry, 1997, “Data Mining Techniques For Marketing, sales, and Customer Support”, Wiley Computer Publishing.
    Mockus, J., and Raudys, A., 2010, “On the Efficient-Market Hypothesis and stock exchange game model”, Expert Systems with Applications, 37(8), pp. 5673-5681.
    Nishina, T., and Hagiwara, M., 1997, “Fuzzy inference neural network”, Neurocomputing, 14(3), pp. 223-239.
    Norio Baba and Motokazu Kozaki, 1992, “An Intelligent Forecasting System of Stock Price Using Neural Networks”, IJCNN- 1992 vol I.
    O'Regan, B., and Gratzel, M., 1991, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353(6346), pp. 737-740.
    Pai, P. F., and Lin, C. S., 2005, “A hybrid ARIMA and support vector machines model in stock price forecasting”, Omega-International Journal of Management Science, 33(6), pp. 497-505.
    Pan, W. T., 2010, “Performing stock price prediction use of hybrid model”, Chinese Management Studies, 4(1), pp. 77-86.
    Qian, B., and Rasheed, K., 2007, “Stock market prediction with multiple classifiers”, Applied Intelligence, 26(1), pp. 25-33.
    Rosenblatt, Frank , 1958 , “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408.
    Tan, A., Quek, C., and Yow, K. C., 2008, “Maximizing winning trades using a novel RSPOP fuzzy neural network intelligent stock trading system”, Applied Intelligence, 29(2), pp. 116-128.
    Tseng, C. H., Cheng, S. T., Wang, Y. H., and Peng, J. T., 2008, “Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices”, Physica a-Statistical Mechanics and Its Applications, 387(13), pp. 3192-3200.
    Widrow and J.B. Angell,1962, “Reliable, Trainable Networks for Computing and Control”, Aerospace Engineering , 21(9):78-123, Also appears in Proceedings of the IAS Man-Machine Competition Meeting, Paper 62-184.
    William C., Davidon , 1991 , “Variable Metric Method for Minimization”, SIOPT Volume 1 Issue 1, Pages 1–17.
    Yoon Youngohc. Swales, George, 1991, “Predicting Stock Price Performance: A Neural Network Approach”, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Science.
    Yu, H.-H., Chen, C.-H., Shi, L., Huang, Y., and Lee, T., 2009, “Twin-spot MARCM to reveal the developmental origin and identity of neurons”, Nat Neurosci, 12(7), pp. 947-953.
    Zadeh , L.A., 1965 , “Fuzzy sets”. Information and Control 8 , pp. 338-353.
    于宗先,1972,“經濟預測”,大中國圖書。
    方世杰,1998,“市場預測方法一百種”,書泉出版社。
    方世榮,2001,“統計學導論”,華泰出版社。
    王春笙,1996,“以技術指標預測台灣股市股價漲跌之實證研究-以類神經網路與複回歸模式建構”,交大資管所碩士論文。
    王進德,2007,“類神經網路與模糊控制理論入門與應用”,全華圖書。
    吳秉奇,1999,“類神經網路在台股指數期貨的指數預測應用”,中央資管所碩士論文。
    吳劍勳,1994,“當日沖銷與股價震盪幅度關係之實證研究”,東吳會計所碩士論文。
    杜金龍,1996,“基本分析在台灣股市應用的訣竅”,金錢文化。
    林東慶,2007,“以灰色理論和類神經網路預測航空客、貨運量之變化”,國立成功大學民用航空所碩士論文。
    林真真,2008,“統計分析與應用手冊-使用R軟體”,文魁出版社。
    周政宏,1995,“神經網路-理論與實務”,松崗圖書。
    周海龍,1995,“台北都會區生活用水量之預測-類神經網路之應用”,國立中興大學資源管理研究所碩士論文。
    唐淑娟,2000,“台灣地區鳳利零售價格預測之研究-灰預測、類神經網路與預測組合之應用”,國立屏東科技大學農企管理系研究所碩士論文。
    許巧鶯,溫裕弘,1997,“台灣地區國際航空客運量之預測-灰色預測模式之應用”,運輸計畫第二十卷第三期,pp. 100-105。
    張振魁,2000,“以類神經網路提高股票單日交易策略之獲利”,中央資管所碩士論文。
    張道行,1998,“使用類神經網路以短期技術指標作次日股價趨勢預測之研究”,論文研究。
    陳薇文,2010,“動態數據預測方法的比較與其應用”,國立成功大學民用航空所碩士論文。
    曾思博,1999,“類神經網路於股價預測與資金配置之應用”,中央資管所碩士論文。
    曾淑青,1994,“運用類神經網路於台灣股票市場價量關係的預測與分析”,交大資管所碩士論文。
    葉怡成,1995,“類神經網路-模式應用與實作”,儒林出版社。
    溫坤禮,趙忠賢,張宏志,陳曉瑩,溫惠筑,2009,“灰色理論”,五南出版社。
    楊豐松,1997,“整合式智慧型系統在資訊篩選上的研究-結合類神經網路與模糊理論以證券市場預測為例”,政大資管所碩士論文。
    蔡宜璇,潘文超,2006,“以灰色理論應用於航空公司股票收盤價預測之研究”,產業管理創新研討會。
    鄧聚龍,郭洪, 1996,“灰預測原理與應用”,全華出版社。
    錢炳全,李順益,王學亮,2001,“基於灰色理論之短期銷售預測方法”,資訊管理展望第5卷第1期。
    羅華強,2001,“類神經網路-MATLAB的應用”,清蔚科技。

    下載圖示 校內:2012-08-30公開
    校外:2012-08-30公開
    QR CODE