| 研究生: |
黃姿勳 Huang, Zih-syun |
|---|---|
| 論文名稱: |
台灣布袋岩芯中沉積物砷含量分布變化及其地質意義 Distribution of arsenic in cored sediments from Budai, Taiwan and its geological significances |
| 指導教授: |
楊懷仁
Yang, Huai-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 砷 、布袋 、黏土 、非晶質鐵氫氧化物 |
| 外文關鍵詞: | Budai, arsenic, clay, amorphous iron oxyhydroxide |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷是具有高度毒性的物質,且對人類健康產生廣泛危害。許多研究顯示癌症及其相關疾病與飲用受砷汙染之地下水具有相當程度之關聯。地下水中砷的來源尚無明確結論,但可能與該區域地底下之含水層有關。本研究分析之沉積物為中央地質調查所位於嘉義縣布袋之鑽井岩芯,樣本顯示該區沉積物主要由不同比例之砂、粉砂與泥所構成,可由沉積物顏色明顯區別。沉積物所含砷濃度範圍由1 mg/L至1677 mg/L,且濃度變化與深度並無系統性相關,其中砷濃度最高之樣本(1677 mg/L)位於深度189.8 m處。所有分析樣本之砷濃度均低於15 mg/kg,除七個樣本之砷含量高於20 mg/kg,這些「高砷樣本」砷濃度較受到嚴重砷汙染地區孟加拉與West Bengal沉積物所含之砷濃度高(20-30 mg/kg; Nickson et al., 2000)。在這些「高砷樣本」中,鋁與鐵濃度呈現正相關。而X光繞射分析,結果顯示高砷樣本中主要礦物相包括石英、長石、伊來石與綠泥石。
利用沉降法將這七個「高砷樣本」分為大、中、小三種粒徑群,並以Keon et al.(2001)連續萃取法找出寄主礦物。一般而言,砷主要富集於具吸附能力的相中,例如非晶質鐵氫氧化物、酸揮發硫化物、氧化錳與碳酸鹽等。七個高砷樣本中有六個樣本所含之砷主要透過吸附作用而富集,然而深度為136.5 m之樣本則主要透過與非晶質鐵氫氧化物共沉澱而富集。因此這些高砷樣本所含砷之寄主礦物推測主要為黏土礦物與非晶質鐵氫氧化物。「高砷樣本」皆採自於厚度小於10 cm且上下沉積物砷濃度低的地層,因此這些「高砷樣本」可能代表地下水中砷富集之處而非地下水砷的來源。而砷濃度與板岩屑含量之間缺乏相關性則指出板岩屑並非沉積物砷之來源。
Arsenic is highly toxic and can lead to a wide range of health problems in humans. Numerous studies showed some extents of connection between cancer-related illnesses and intakes of arsenic-contaminated ground water. The source of arsenic in groundwater is not ascertained definitely, but it might be related to the aquifer below this area. In this study, sediment samples collected from the core drilled by Central Geological Survey, MOEA at Budai, Chiayi were analyzed. These samples show variable admixtures of sand, silt and clay, characterized by distinct colors. Arsenic concentrations vary in the ranges of 1-1677 mg/L without a systematic correlation between arsenic concentration and depth. The highest arsenic concentration (1677 mg/L) occurs at the depth of 189.8 m. All the samples have arsenic concentrations lower than 15 mg/kg, except for seven samples with arsenic contents over 20 mg/kg, higher than that in the severely arsenic-polluted Bangladesh and West Bengal sediments (20-30 mg/kg; Nickson et al., 2000). There is a positive correlation between Al and Fe concentrations in the high-arsenic samples. XRD analyses indicate that these high-arsenic samples are consisted of quartz, feldspar, illite and chlorite.
Seven samples with arsenic content greater than 20 mg/L were analyzed by the arsenic sequential extraction procedure of Keon et al. (2001) to identify the arsenic-host minerals. The sediment samples were separated into fine, middle, and coarse grains by the precipitation method. In general, arsenic contents mainly concentrate at absorbable phases, such as amorphous iron oxyhydroxide, acid volatile sulfide, Mn oxides and carbonates. The majority of arsenic in six of seven of high-arsenic samples was concentrated by adsorption, while that in sample 136.5m were co-precipitated with amorphous Fe oxyhydroxides. The hosts of arsenic in the high-arsenic samples are inferred to be clay minerals and/or amorphous iron-oxyhydroxides. These high-arsenic samples were all collected from thin layers of < 10 cm thickness with adjacent samples having low arsenic concentration. Therefore, it is more likely that these high-arsenic samples represent sinks rather than sources of arsenic in ground water. The absence of a correlation between the abundance of detrital slates and arsenic concentration indicates that slate is not the source of arsenic in these sediments.
參考文獻
中文部份
中央地質調查所網站 http://hydro.moeacgs.gov.tw/。
王聖瑋,台灣西南沿海地區地層環境中砷之來源與釋出機制,國立台灣大學生物環境系統工程研究所博士論文(2007)。
吳琮壬,嘉義海岸平原區末次冰期以來古沉積環境之研究,國立台灣大學地質科學研究所碩士論文(2007)。
畢如蓮,台灣嘉南平原地下水砷生成途徑與地質環境之初步探討,國立台灣大學地質科學研究所碩士論文(1995)。
陳于高,晚更新世以來南台灣地區海水面變化與新構造運動研究,國立台灣大學地質科學研究所博士論文(1993)。
陳文福,台灣的地下水,遠足文化出版(2005)。
陳冠宇,台灣西南海岸平原地下水砷之遷移與富集,國立台灣大學地質科學研究所碩士論文(2007)。
陳拱北與吳新英,第二份烏腳病流行病學研究報告:飲用水源與疾病的關係。台灣醫誌,(61): 611-618(1962)。
陳麒全,台灣嘉南平原新東及錦湖兩地沉積物砷富集與釋出之研究,國立台灣大學地質科學研究所碩士論文(2003)。
經濟部水資會,民國七十三年台灣水利年報:經濟部水資會(1986)。
經濟部水資源局,台灣地區地下水觀測網水質監測調查分析(3/5) (2001)。
劉聰桂,嘉南平原地下水定年分析及垂向水質變化研究(1999)。
歐東坤,台南地區地下水砷濃度之研究,國立台灣大學地質科學研究所碩士論文(2005)。
賴志傑,嘉南平原之水文地質環境中砷之分布與特徵:意涵砷之釋出過程,國立台灣大學生物環境系統工程學研究所碩士論文(2008)。
顏富士,曾文溪下游之砷異常及板岩屑與漂砂,科學發展月刊,第6卷,第3期(1978)。
英文部分
Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S. and Kato, K., Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2-3): 109-131, 2003.
Appelo, C. A. J. and Postma D. Geochemistry, Groundwater and Pollution. Balkema, A. A., Rotterdam, 1994.
Belzile, N. and Tessier, A., Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochimica Et Cosmochimica Acta, 54(1): 103-109, 1990.
Berg, M.,Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Van Dan, N., Giger, W., Stuben, D., Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249(1-2): 91-112, 2008.
Berner, R. A., A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 51(2): 359-365, 1981.
Bowell, R.J., Sorption of arsenic by iron-oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3): 279-286, 1994.
Brookins, D.G., Eh-pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 1988.
Charlet, L., Chakraborty, S., Appelo, C.A.J., Roman-Ross, G., Nath, B., Ansari, A.A., Musso, M., Chatterjee, D., Basu Mallick, S., Chemodynamics of an As “hotspot” in a West Bengal aquifer: A field and reactive transport modelling study. Applied Geochemistry, 22: 1273-1292, 2007.
Chen, C.J., Kuo, T.L. and Wu, M.M., Arsenic and cancers. Lancet, 1(8582): 414-415, 1988.
Chen, K.P., Wu, H.Y. and Wu, T.C., Epidemiologic studies on blackfoot disease in Taiwan 3 physiochemical characteristics of drinking water in endemic blackfoot disease area memoirs college of medicine. National Taiwan Univ., 8: 115-129, 1962.
Chester, R., Thomas, A., Lin, F. J., Basaham, A. S. and Jacinto, G., The solid-state speciation of copper in surface-water particulates and oceanic sediments. Marine Chemistry, 24(3-4): 261-292, 1988.
Chin, H.F., Lin, M.C. and Yang, C.Y., Primary intracerebral hemorrhage mortality reduction after installation of a tap-water supply system in an arseniasis-endemic area in southwestern Taiwan. Journal of Toxicology and Environmental Health-Part a-Current Issues, 70(5-6): 539-546, 2007.
Davis, J. A., Kent, D. B., Surface complexation modeling in aqueous geochemistry, Reviews in Mineralogy, 23: 177-260, 1990.
Dhar, R.K. Biswas, B. K., Samanta, G., Mandal, B. K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A. W., Ahmed, S. A., Hadi, S. A., Groundwater arsenic calamity in Bangladesh. Current Science, 73(1): 48-59, 1997.
Driehaus W., Jekel M. and Hildebrandt U., Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. J Water SRT – Aqua, 47: 30-35, 1998.
Elkhatib, E.A., Bennett, O.L. and Wright, R.J., Kinetics of arsenite sorption in soils. Soil Science Society of America Journal, 48(4): 758-762, 1984a.
Elkhatib, E.A., Bennett, O.L. and Wright, R.J., Arsenite sorption and desorption in soils. Soil Science Society of America Journal, 48(5): 1025-1030, 1984b.
Gambrell, R. P., Wiespape, J. B., Patrick, W. H. Jr., Duff, M. C., The effects of pH, redox and salinity on metal release from a contaminated sediment, Water Air and Soil Pollution, 57-8: 359-367, 1991.
Han, B.C., Jeng, W. L., Chen, R. Y., Fang, G. T., Hung, T. C. and Tseng, R. J., Estimation of target hazard quotients and potential health risks for metals by consumption of seafood in Taiwan. Archives of Environmental Contamination and Toxicology, 35(4): 711-720, 1998.
Hering, J. G. and Kneebone, P. E., Biogeochemical controls on arsenic occurrence and mobility in water supplies. In: Frankenberger, W. T. Jr., (Ed.), Environmental Chemistry of Arsenic. Marcel Dekker Publ., New York: 155-181, 2002.
IARC (International Agency for Research on Cancer), Monographs on evaluation of carcinogenic risk to humans. In: Some Drinking Water Disinfectants and Contaminants, including Arsenic Vol. 84. Lyon: IARC Press. 269–477, 2004.
IPCS, Arsenic and arsenic compounds. Environmental Health Criteria, No,224, 2001. http://www.inchem.org/documents/ehc/ehc/ehc224.htm
Jacobs, L.W., Syers, J.K. and Keeney, D.R., Arsenic sorption by soils. Soil Science Society of America Proceedings, 34(5): 750-754, 1970.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C.F. and Hemond, H.F., Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology, 35(13): 2778-2784, 2001.
Kim, M.J., Nriagu, J. and Haack, S., Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34(15): 3094-3100, 2000.
Kim, M.J., Nriagu, J. and Haack, S., Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120(2): 379-390, 2002.
Li, X. D., Coles, B. J., Ramsey, M. H. and Thornton, I., Sequential extraction of soils for multielement analysis by ICP-AES. Chemical Geology, 124: 109-123, 1995.
Lin, M.C., Liao, C.M., Liu, C.W. and Singh, S., Bioaccumulation of arsenic in aquacultural large-scale mullet Liza macrolepis from Blackfoot disease area in Taiwan. Bulletin of Environmental Contamination and Toxicology, 67(1): 91-97, 2001.
Livesey, N.T. and Huang, P.M., Adsorption of arsenate by soils and its relation to selected chemical-properties and anions. Soil Science, 131(2): 88-94, 1981.
Lovley, D.R., Organic-matter mineralization with the reduction of ferric iron - a review. Geomicrobiology Journal, 5(3-4): 375-399, 1987.
Malachowski, M.E., An update on arsenic. Clinics in Laboratory Medicine, 10(3): 459-472, 1990.
Mandal, B.K. and Suzuki, K.T., Arsenic round the world: a review. Talanta, 58(1): 201-235, 2002.
Mandal, B.K. Chowdhury, T. R., Samanta, G., Mukherjee, D. P., Chanda, C. R., Saha, K. C. and Chakraborti, D., Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218(2-3): 185-201, 1998.
McArthur, J. M., Ravenscroft, P., Safiullah, S. and Thirlwall, M. F., Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour. Res. 37: 109-117, 2001.
Moore, J.N., Ficklin, W.H. and Johns, C., Partitioning of arsenic and metals in reducing sulfidic sediments. Environmental Science and Technology, 22(4): 432-437, 1988.
Mukherjee, A. and Fryar, A.E., Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal Basin, West Bengal, India. Applied Geochemistry, 23: 863-893, 2008.
Nath, B., Stueben, D., Basu Mallik, S., Chatterjee, D. and Charlet, L., Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry, 23: 977-995, 2008a.
Nath, B., Berner, Z., Chatterjee, D., Basu Mallik, S. and Stueben, D., Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Applied Geochemistry, 23: 996-1011, 2008b.
Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., and Rahman, M., Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700): 338-338, 1998.
Nickson, R.T., McArthur, J.M., Ravenscroft, P., Burgess, W.G. and Ahmed, K.M., Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413, 2000.
Nirel, P.M.V. and Morel, F.M.M., Pitfalls of sequential extractions. Water Research, 24(8): 1055-1056, 1990.
NRC, National Research Council. Arsenic in the Drinking Water, National Academy Press, Washington, DC, pp. 1–310, 1999.
NRC., National Research Council. National Academy; Washington, DC: 2001. Arsenic in the Drinking Water; Update, 2001.
NTP. National Toxicology Program Report on Carcinogens. 11th Edition. U.S. Department of Health and Human Services, Research Triangle Park; NC: 2004. Arsenic compounds, inorganic; pp. III18–III20, 2004.
Onishi H., Arsenic, in: K.H. Wedepohl (Ed.), Handbook of Geochemistry, Springer-Verlag, New York, Vol. II-2, Chapter 33, 1969.
Paige, C.R., Snodgrass, W.J., Nicholson, R.V. and Scharer, J.M., An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions. Water Research, 31(9): 2370-2382, 1997.
Pontius, F.W., Brown, K.G., and Chen, C.J., Health implication of arsenic in drinking water. J.Am. Water Works Ass., 86: 52-63, 1994.
Ruttenberg, K.C., Development of a sequential extraction method for different forms of phosphorus in marine-sediments. Limnology and Oceanography, 37(7): 1460-1482, 1992.
Sadiq, M., Zaidi, T.H. and Mian, A.A., Environmental behavior of arsenic in soils - theoretical. Water Air and Soil Pollution, 20(4): 369-377, 1983.
Sakata, M., Relationship between adsorption of arsenic(iii) and boron by soil and soil properties. Environmental Science and Technology, 21(11): 1126-1130, 1987.
Smedley, P.L. and Kinniburgh, D.G., A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5): 517-568, 2002.
Smedley, P.L., Edmunds, W.M. and Pelig-Ba, K.B., Mobility of arsenic in groundwater in the Obuasi gold-mining area Ghana: some implication for human health. In: Appleton, J.D., Fuge, R. and McCall, G.J.H.(Eds.), Environmental Geochemistry and Health 113, Geological Society Special Publication, London, 163-181, 1996.
Stow, S.H., Occurrence of arsenic and color-causing components in florida land-pebble phosphate rock. Economic Geology, 64(6): 667-671, 1969.
Sullivan, K.A. and Aller, R.C., Diagenetic cycling of arsenic in Amazon shelf sediments. Geochimica Et Cosmochimica Acta, 60(9): 1465-1477, 1996.
Tseng, W. P., Chu, H. M., How, S. W., Fong, J. M., Lin, C. S. and Yeh, S., Prevalence of skin cancer in an endemic area of chronic arsenicism in taiwan. Journal of the National Cancer Institute, 40(3): 453-463, 1968.
Ure, A., Berrow, M., Chapter 3. The elemental constituentsof soils. In: Bowen, H.J.M. (Ed.), Environmental Chemistry. Royal Society of Chemistry, London, pp. 94–203, 1982.
Waslenchuk, D.G., Geochemical controls on arsenic concentrations in southeastern united-states rivers. Chemical Geology, 24(3-4): 315-325, 1979.
Webster, J.G., Arsenic. In: Marshall, C.P., Fairbridge, R.W. (Eds.), Encyclopaedia of Geochemistry. Chapman Hall, London, pp. 21–22, 1999.
Welch, A.H., Lico, M.S. and Hughes, J.L., Arsenic in ground-water of the western united-states. Ground Water, 26(3): 333-347, 1988.
WHO, Guidelines for drinking-water quality. Volume 1: Recommendatoins, 2nd ed. WHO, Geneva. 1993.
WHO, Environmental Health Criteria 224: Arsenic compounds 2nd edition. World Health Organisation, Geneva. 2001.
Williams, M., Fordyce, F., Paijitprapapon, A. and Charoenchaisri, P., Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat Province, southern Thailand. Environmental Geology, 27(1): 16-33, 1996.
Xu, H., Allard, B. and Grimvall, A., Influence of pH and organic-substance on the adsorption of As(v) on geologic materials, Water Air and Soil Pollution, 40(3-4): 293-305, 1988.
Yan, X.P., Kerrich, R. and Hendry, M.J., Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in porewaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochimica Et Cosmochimica Acta, 64(15): 2637-2648, 2000.
Yoshinaga, J., Chatterjee, A., Shibata, Y., Morita, M. and Edmonds, J.S., Human urine certified reference material for arsenic speciation. Clinical Chemistry, 46(11): 1781-1786, 2000.
Yu, K.H., Chang, M.C., Yen, F.S., Tsai, S.C., On the arsenic distribution along the coastline are of southwestern Taiwan. In: Geertman, R.M. (Ed.) 8th World Saly Symposium, 601-605, 2000.
校內:2059-09-01公開