| 研究生: |
邱建程 Chiu, Chien-Cheng |
|---|---|
| 論文名稱: |
燒結密度對316L 不銹鋼粉末冶金件動態撞擊特性及微觀結構之影響 Variations in Sintering Density for Controlling the Dynamic Impact Properties and Microstructure of 316L Sintered Stainless Steel |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 霍普金森高速撞擊試驗機 、絕熱剪切帶 、316L 不銹鋼粉末冶金件 |
| 外文關鍵詞: | adiabatic shear band |
| 相關次數: | 點閱:73 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用霍普金森高速撞擊試驗機,討論燒結密度對316L不銹鋼粉末冶金件撞擊性能的影響。實驗中,各密度試件之製程參數由田口式分析法設計;而撞擊試驗過程於25℃進行,將相對密度93%、88%及83%試件於應變速率3×103 s-1、5×103 s-1、7×103 s-1、9×103 s-1下進行衝擊試驗,再將所得數據及微觀結果(OM、SEM)進行分析,以釐清燒結密度及應變速率對動態荷載下之塑性變形行為及微觀組織的影響。並於最後引用一材料構成方程式來描述316L不銹鋼粉末冶金件於各燒結密度及應變速率條件下之塑變行為,以做為工程模擬分析之用。
研究結果顯示,316L不銹鋼粉末冶金件之動態機械性質受到燒結密度及應變速率的影響甚鉅。針對相同密度的試件而言,其塑流應力及應變速率敏感性係數皆隨著應變速率的增加而上升,熱活化體積及加工硬化係數則呈現相反的趨勢;而在同一應變速率下,塑流應力值及應變速率敏感性係數隨燒結密度的增加而上升,而熱活化體積及加工硬化係數則隨燒結密度的增加而下降。最後,將各實驗條件下之塑流應力值在轉換為von Mises微觀等效應力後,藉由Khan-Huang-Liang模式之構成方程式並加入理論溫升量的修正項,可以很準確的用來描述各密度之316L不銹鋼粉末冶金件於高速撞擊下之塑變行為。
由破壞形貌觀察,可知316L不銹鋼粉末冶金件在高速變形下,破壞的模式由絕熱剪切帶主導,材料的破壞乃由主裂縫及次裂縫之絕熱剪切帶相互結合而成;另於壓縮過程中,在試件外緣之圓周表面處亦因孔洞聚集,使材料表面延性降低而導致表面裂縫的出現。其中,材料之主裂縫分佈與應變速率有關,而試件的密度則對於材料的表面延性有直接的影響。此外,在破斷面的觀察上,可以發現主要是以韌窩組織形貌為主的延性破壞形貌,而韌窩組織的形貌亦會隨著燒結密度及應變速率條件而有所不同。
This study uses the split-Hopkinson pressure bar to investigate the influence of sintering density on the dynamic impact properties of Type 316L sintered stainless steel. The Taguchi method is used to design the sintering process factors such that the sintered specimens have densities ranging from 83% to 93%. Mechanical testing is performed under strain rates between 3×103 s-1 and 9×103 s-1. OM and SEM microscopy techniques are used to analyze the fracture and microstructural characteristics of the deformed specimens to determine the relationship between the mechanical and microstructural properties. The experimental results show that the sintering density, strain and strain rate all influence the mechanical properties of the Type 316L stainless steel. At a constant sintering density, the flow stress and strain rate sensitivity increase with increasing strain rate, but the activation volume and work hardening coefficient decrease. Under a constant strain rate, the flow stress and strain rate sensitivity increase with increasing sintering density, while the activation volume and work hardening coefficient decrease. Fractographic analysis reveals that the crack distribution depends strongly on the strain rate and shows that the surface ductility decreases with decreasing sintering density. The OM and SEM fracture feature observations indicate that adiabatic shear band formation is the dominant fracture mechanism. The shear bands form along the direction of maximum shear stress. Furthermore, dimple characteristics are observed on the fracture surfaces. The depth and density of the dimples are found to decrease as the strain rate is increased. Finally, applying the Khan-Huang-Liang constitutive equation with the experimentally determined specific material parameters provides accurate predictions of the flow behaviour of Type 316L sintered stainless steel under the current test conditions.
1. C. H. Ji, N. H. Loh, K. A. Khor and S. B. Tor, “Sintering Study of 316L Stainless Steel Metal Injection Molding Parts Using Taguchi Method: Final Density,” Materials Science and Engineering A, Vol. 311, No. 1-2, pp. 74-82, 2001.
2. E. S. Thian, N. H. Loh, K. A. Khor and S. B. Tor, “Microstructures and Mechanical Properties of Powder Injection Molded Ti-6Al-4V/HA Powder,” Biomaterials, Vol. 23, No. 14, pp. 2927-2938, 2002.
3. F. Chagnon and Y. Trudel, “Effect of Compaction Temperature on Sintered Properties of High Density P/M Materials,” Advances in Powder Metallurgy and Particulate Materials, Vol. 2, pp. 5/3-5/14, 1995.
4. A. L. Gurson, “Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I – Yield Criteria and Flow Rules for Porous Ductile Media,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 99 Ser H, No. 1, pp. 2-15, 1977.
5. K. T. Kim and J. Suh, “Elastic-Plastic Strain Hardening Response of Porous Metals,” International Journal of Engineering Science, Vol. 7, No. 7, pp. 767-778, 1989.
6. K. T. Kim and Y. S. Kwon, “Strain Hardening Response of Sintered Porous Iron Tubes with Various Initial Porosities under Combined Tension and Torsion,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 114, No. 2, pp. 213-217, 1992.
7. J. Koplik and A. Needleman, “Void Growth and Coalescence in Porous Plastic Solids,” International Journal of Solids and Structures, Vol. 24, No. 8, pp. 835-853, 1988.
8. B. Wang, J. R. Klepaczko, G. Lu and L. X. Kong, “Viscoplastic Behaviour of Porous Bronzes and Irons,” Journal of Materials Processing Technology, Vol. 113, No. 1-3, pp. 574-580, 2001.
9. S. B. Biner and W. A. Spitzig, “Densification of Iron Compacts with Various Initial Porosities under Hydrostatic Pressure,” Acta Metallurgica, Vol. 38, No. 4, pp. 603-610, 1990.
10. M. M. Carroll and K. T. Kim, “Pressure-Density Equations for Porous Metals and Metal Powders,” Powder Metallurgy, Vol. 27, No. 3, pp. 153-159, 1984.
11. A. Shirizly, J. Tirosh and L.Rubinski, “Open Die Forging of Porous Materials,” Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A249, No. 1-2, pp. 55-61, 1998.
12. E. Angelini, P. Piccardo, M. R. Pinasco and F. Rosalbino, “Investigation of the Corrosion Behaviour of AISI 316L Stainless Steel Sintered in Different Conditions,” Metallurgia Italiana, Vol. 91, No. 5, pp. 37-45, 1999.
13. L. Castro, S. Merino, B. Levenfeld, A. Varez, J.M. Torralba, “Mechanical Properties and Pitting Corrosion Behaviour of 316L Stainless Steel Parts Obtained by a Modified Metal Injection Moulding Process,” Journal of Materials Processing Technology, Vol. 143-144, No. 1, pp. 397-402, 2003.
14. E. Otero, A. Pardo, M. V. Utrilla, E. Saenz and J. F. Alvarez, “Corrosion Behaviour of AISI 304L and 316L Stainless Steels Prepared by Powder Metallurgy in the Presence of Sulphuric and Phosphoric Acid,” Corrosion Science, Vol. 40, No. 8, pp. 1421-1434, 1998.
15. T. S. Yoon, Y. H. Lee, S. H. Ahn, J. H. Lee and C. S. Lee, “Effects of Sintering Conditions on the Mechanical Properties of Metal Injection Molded 316L Stainless Steel,” ISIJ International, Vol. 43, No. 1, pp. 119-126, 2003.
16. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proceedings of the Physical Society, Vol. 62, pp. 676-699, 1949.
17. B. M. Butcher and C. H. Karnes, “Strain Rate Effects in Metals,” Journal of Applied Physics, Vol. 37, pp. 402-411, 1964.
18. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Experimental Mechanics, Vol. 6, pp. 395-402, 1966.
19. Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rates of Strain, (ed. J. Harding), pp. 257-265, 1989.
20. D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate,” Journal of Applied Physics, Vol. 51, No. 3, pp. 1498-1504, 1980.
21. M. G. da Silva and K. T. Ramesh, “The Rate-Dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V,” Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A232, No. 1-2, pp. 11-22, 1997.
22. J. Duffy, Y. C. Chi, “On the Measurement of Local Strain and Temperature during the Formation of Adiabatic Shear Bands,” Materials Science and Engineering, Vol. A157, pp. 195-210, 1992.
23. S. C. Liao, J. Duffy, “Adiabatic Shear Bands in A Ti-6Al-4V Titanium Alloy,” Journal of the Mechanics and Physics of Solids, Vol. 46, No. 11, pp. 2201-2231, 1998.
24. K. A. Hartley, J. Duffy and R. H. Hawley, “Measurement of the Temperature Profile during Shear Band Formation in Steels Deforming at High Strain Rates,” Journal of the Mechanics and Physics of Solids, Vol. 35, No. 3, pp. 283-301, 1987.
25. A. Marchand, J. Duffy, “An Experimental Study of the Formation Process of Adiabatic Shear Bands in a Structural Steel,” Journal of the Mechanical Physical Solids, Vol. 36, No. 3, pp. 251-283, 1988.
26. Y. B. XU, Y. L. Bai, Q. Xue and L. T. Shen, “Formation, Microstructure and Development of the Localized Shear Deformation in Low-carbon Steels,” Acta Materialia, Vol. 44, No. 5, pp. 1917-1926, 1996.
27. 黃振賢,機械材料,文京圖書有限公司,頁234-244,民國八十九年。
28. 汪建民,粉末冶金技術手冊,中華民國粉末冶金協會,頁18-23,民國八十三年。
29. R. M. German, Powder Metallurgy Science, Metal powder Industries Federation, Princeton, NJ, pp. 27-79, 1994.
30. D. L. Dyke and H. D. Ambs, Powder Metallurgy: Applications, Advantages and Limitations, edited by E. Klar, ASM, Ohio, 1983.
31. A. Stosuy and R. R. Holmes, “Sintered Type 316L Stainless Steel Its Properties and Processing,” Metal Progress, Vol. 91, pp.81-85, 1967.
32. J. D. Campbell, “Dynamic Plasticity-Macroscopic and Microscopic Aspects,” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
33. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
34. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
35. A. Seeger, “Dislocation and Mechanical Properties of Crystals,” The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
36. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
37. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, No. 4, pp. 1863-1869, 1967.
38. J. D. Campbell and A. R. Dowling, “Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of the Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
39. Y. Bai and B. Dodd: Adiabatic Shear Localization, Pergamon Press, Oxford, pp. 1-3, 1992.
40. W. S. Lee and C. F. Lin, “Impact Properties and Microstructure Evolution of 304L Stainless Steel,” Materials Science and Engineering A, A308, pp. 124-135, 2001.
41. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
42. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
43. M. A. Meyers, Elastic Waves, Dynamics Behavior of Materials, Jhon Wiely & Son, pp. 23-65, 1994.
44. 林奇鋒,“鈦合金(Ti-6Al-4V)之高速高溫變形行為分析”,國立成功大學機械工程研究所碩士論文,頁5-23,1996。
45. U. Lindstedt, B. Karlsson, and R. Masini, “Influence of Porosity on Deformation and Fatigue Behavior of P/M Austenitic Stainless Steel,” International Journal of Powder Metallurgy, Vol. 33, No. 8, pp. 49-61, 1997.
46. Z. Hashin and S. Shtrikman, “A variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials,” Journal of Mechanics and Physics of Solids, Vol. 11, pp. 127-140, 1963.
47. 黃忠良,多孔材料學,復漢出版社,頁191-199,民國79年。
48. B. Budiansky, “Thermal and Thermoelastic Properties of Isotropic Composites,” Journal of Composite Materials, Vol. 4, pp. 286-295, 1970.
49. H. N. Han, Y. G. Lee, K. H. Oh and D. N. Lee, “Analysis of Hot Forging of Porous Metals,” Materials Science and Engineering A, Vol. A206, No. 1, pp. 81-89, 1996.
50. V. Tvergaard, “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions,” International Journal of Fracture, pp. 389-407, 1981.
51. V. Tvergaard and A, Needleman, “Effect of Material Rate Sensitivity on Failure Modes in the Charpy V-Notch Test,” Journal of Mechanics and Physics of Solids, Vol. 34, No. 3, pp. 213-241, 1986.
52. W. Johnson, Impact Strength of Material, Edward Arnold, pp. 134-135, 1972.
53. J. D. Campbell, A. M. Eleiche, amd M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp. 545-563, 1977.
54. G. R. Johnson and W. H. Cook, In Processing of Seventh International Symposium Om Ballistics, The Netherlands, pp. 541-562, 1983.
55. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
56. F. J. Zerilli and R. W. Armstrong, “The Effect of Dislocation Drag on the Stress-Strain Behavior of F.C.C Metals,” Acta Metallurgica et Materialia, Vol. 40, No. 8, pp. 1803-1808, 1992.
57. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” High strain rate effects on polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
58. R. Liang and A. S. Khan, “A Critical Review of Experimental Results And Constitutive Models For BCC And FCC Metals Over A Wide Range of Strain Rates And Temperatures,” International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
59. A. S. Khan and R. Liang, “Behaviors of three BCC metals during non-proportional multi-axial loadings: Experiments and modeling,” International Journal of Plasticity, Vol. 16, No. 12, pp. 1443-1458, 2000.
60. A. S. Khan and R. Liang, “Behaviors of Three BCC Metal over A Wide Range of Strain Rates and Temperatures: Experiments and Modeling,” International Journal of Plasticity, Vol. 15, No. 10, pp. 1089-1109, 1999.
61. 李輝煌,田口方法:品質設計的原理與實務,高立出版社,頁227-272,民國89年。
62. W. A. Spitzig, R. E. Smelser and O. Richmond, “The Evolution of Damage and Fracture in Iron Compacts with Various Initial Porosities,” Acta Metallurgica, Vol. 36, No. 5, pp. 1201-1211, 1988.
63. G. E. Dieter, “Thermally Activated Deformation,” Mechanical Metallurgy, pp. 310-315, 1988.
64. M. G. da Silva and K. T. Ramesh, “The Rate-Dependent Deformation of Porous Pure Iron,” International Journal of Plasticity, Vol. 13, No. 6-7, pp. 587-610, 1997.
65. A. S. Khan and H. Zhang, “Mechanically Alloyed Nanocrystalline Iron And Copper Mixure : Behavior And Constitutive Modeling Over A Wide Range of Strain Rates,” International Journal of Plasticity, Vol. 16, pp. 1477-1492, 2000.
66. M. A. Dunlavy, R. Shivpuri and S. L. Semiatin, “Failure during hot working of spray-formed Rene' 88,” Materials Science and Engineering A, Vol. 359, No. 1-2, pp. 210-219, 2003.
67. R. J. Bourcier, D. A. Koss, R. E. Smelser and O. Richmond, “The Influence of Porosity on The Deformation and Fracture of Alloys,” Acta Metallurgica, Vol. 34, No. 12, pp. 2443-2453, 1986.
68. M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaling Rules for Adiabatic Shear,” in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. Meyers) pp. 675-688, Marcel Dekker Inc., New York, 1986.
69. S. L. Semiatin and G. D. Lahoti, “The Occurrence of Shear Bands in Nonisothermal, Hot Forging of Ti-6Al-2Sn-4Zr-2Mo-0.1Si,” Metallurgical Transactions A, Vol. 14A, No. 1, pp. 105-115, 1983.