簡易檢索 / 詳目顯示

研究生: 吳宗讓
Wu, Tzung-Rang
論文名稱: 利用數值分析模擬閘極引發源極漏電流之雙閘極電晶體
Modeling GIDL Leakage Current of Double Gate FET by Numerical Calculation
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 57
中文關鍵詞: 飄移擴散模型影型式演算法修正閘極引發源極漏電流量子傳輸非平衡態格林函數雙閘極金氧半場效電晶體
外文關鍵詞: Drift diffusion model (DD), Implicit method modification, Gate induce drain current (GIDL), Non-Equilibrium Green’s function (NEGF), Double-Gate MOSFETs (DG MOSFETs)
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在數值方法中有許多的迭代方法來解微分方程式,本文利用單調迭代法解古典的飄移擴散模型,使用數值分析將電流連續方程式簡化,加速電腦對矩陣的計算時間,並讓Shockley Read Hall(SRH)與Band to Band Tunneling(BTBT)加入電流方程式中討論,得到電晶體中的漏電流的結果,而在數值的演算中,我們探討SRH與BTBT在顯型式與影型式的演算速度和收斂情況。

    本文成功模擬出飄移擴散模型對閘極引發源極漏電流探討,然而CMOS元件大小隨著莫爾定律逐年縮小,尺寸進入到奈米等級,漏電流成為一個相當重要的議題,且需要考慮更多的量子效應來修正結果,如非平衡態格林函數模型,但在此程式只能計算n型元件MOSFET(忽略電洞影響) ,也表示著跟BTBT相關的機制都會被忽略,且在元件中漏電流都會被低估。本文利用半古典方法且考慮電洞的影響模擬出GIDL 漏電流並且討論電流電壓特性曲線和元件中的電場及通道長度。

    There are many iterative methods to solve the partial differential equations in the numerical calculations. In this work, we use monotone iterative method to solve the Drift Diffusion model and simplify the current continuity equations to accelerate the computation. Shockley Read Hall (SRH) and band to band tunneling (BTBT) are considered in the current continuity equations accounting for the minimum and leakage currents of a transistor. In the numerical algorithm, we consider the convergence and consumption of system together with the explicit and implicit methods.
    In our research, we model the gate-induced drain leakage (GIDL) currents successfully and discuss the results. As CMOS is scaled down, quantum physics becomes more and more important because of the wave nation of electrons and a quantum simulator (such as non-equilibrium Green’s function NEGF) is requested to correctly predict the device performance. Although the open source of NEGF is available (such as nanoMOS in nanohub), it only considers quantum transport on the conduction bands for electrons. This means all mechanisms involving band to band transitions have been neglected, underestimating the off-currents of a device. This research models the GIDL currents and discusses the Id verse Vg current characteristics and electric field of devices with different channel length by a semi-classical method including hole transport.

    摘要…………………………………………I ABSTRACT…………………………………………II 誌謝…………………………………………III CONTENTS…………………………………………IV FIGURE CAPTIONS……………………………………………………………………………V CHAPTER I INTRODUCTION…………………………………………1 1-1 CMOS SCALING…………………………………………1 1-2 SHORT CHANNEL EFFECTS OF MOSFETS…………………………………………1 1-3 QUANTUM MECHANICAL EFFECT…………………………………………2 1-4 RESEARCH OBJECTIVE AND DISSERTATION OUTLINE……………………………3 CHAPTER II NUMERICAL METHOD…………………………………………4 2-1 PHYSICAL MODEL…………………………………………4 2-1-1 Drift Diffusion model…………………………………………12 2-1-2 Non-Equilibrium Green Function model……………………………………28 2-2 PHYSICAL MODEL FOR CARRIER GENERATION…………………………………………37 2-2-1 Shockley-Read-Hall Recombination…………………………………………38 2-2-2 Band to Band Tunneling…………………………………………38 2-3 LITERATURE REVIEW…………………………………………39 CHAPTER III METHOD AND RESULT…………………………………………41 3-1 SIMULATION RESULT…………………………………………41 3-2 COMPARE THE IMPLICIT AND EXPLICIT METHOD…………………………………46 3-3 ANALYSIS BAND TO BAND GENERATION RATE AND AVERAGE ELECTRIC FIELD…………………………………………51 CHAPTER IV NEGF-DD COUPLED MODEL…………………………………………53 4-1 INTRODUCTION…………………………………………53 4-2 NEGF-DD COUPLED METHOD…………………………………………53 CHAPTER VI CONCLUSION & FUTURE WORK…………………………………………55 5-1 CONCLUSION…………………………………………55 5-2 FUTURE WORK…………………………………………55 REFERENCES…………………………………………56

    [1]. López-Villanueva, J. A., et al. "A model for the quantized accumulation layer in metal-insulator-semiconductor structures." Solid-state electronics 38.1 (1995): 203-210.
    [2]. Li, Yiming. "A parallel monotone iterative method for the numerical solution of multi-dimensional semiconductor Poisson equation." Computer Physics Communications 153.3 (2003):
    [3]. S. Datta, Quantum Transport: Atom to Transistor. Cambridge, UK: Cambridge Univ. Press, 2005.
    [4]. Ren, Zhibin, et al. "nanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs." IEEE Transactions on Electron Devices 50.9 (2003): 1914-1925.
    [5]. Hurkx, G. A. M., D. B. M. Klaassen and M. P. G. Knuvers. "A new recombination model for device simulation including tunneling." IEEE Transactions on electron devices 39.2 (1992): 331-338.
    [6]. Kao, Kuo-Hsing, et al. "Direct and indirect band-to-band tunneling in germanium-based TFETs." IEEE Transactions on Electron Devices 59.2 (2011): 292-301.
    [7]. Mishra, Rahul, and Bahniman Ghosh. "NEGF analysis of double gate SiGe and GaAs Tunnel FETs." 16th International Workshop on Physics of Semiconductor Devices. Vol. 8549. International Society for Optics and Photonics, 2012.
    [8]. Hosenfeld, Fabian, et al. "Non-iterative NEGF based model for band-to-band tunneling current in DG TFETs." 2017 MIXDES-24th International Conference" Mixed Design of Integrated Circuits and Systems. IEEE, 2017.
    [9]. Choi, Yang-Kyu, et al. "Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs." Japanese journal of applied physics 42.4S (2003): 2073.
    [10]. Odanaka, Shinji. "Multidimensional discretization of the stationary quantum drift-diffusion model for ultrasmall MOSFET structures." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 23.6 (2004): 837-842.
    [11]. Ganapathi, Kartik, Youngki Yoon, and Sayeef Salahuddin. "Analysis of InAs vertical and lateral band-to-band tunneling transistors: Leveraging vertical tunneling for improved performance." Applied Physics Letters 97.3 (2010): 033504.
    [12]. Degond, Pierre, Samy Gallego, and Florian Méhats. "An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes." Journal of Computational Physics 221.1 (2007): 226-249.
    [13]. Shen, Chen, et al. "A new robust non-local algorithm for band-to-band tunneling simulation and its application to Tunnel-FET." Solid-State Electronics 57.1 (2011): 23-30.
    [14]. Kerber, Pranita, et al. "GIDL in doped and undoped FinFET devices for low-leakage applications." IEEE Electron Device Letters 34.1 (2012): 6-8.
    [15]. Chen, Jian, et al. "Subbreakdown drain leakage current in MOSFET." IEEE Electron Device Letters 8.11 (1987): 515-517.
    [16]. Padilla, J. L., F. Gamiz, and A. Godoy. "A simple approach to quantum confinement in tunneling field-effect transistors." IEEE Electron Device Letters 33.10 (2012): 1342-1344.
    [17]. Kang, Jiahao, et al. "Computational study of gate-induced drain leakage in 2D-semiconductor field-effect transistors." 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017.
    [18]. Krishnamohan, Tejas, et al. "Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and≪ 60mV/dec subthreshold slope." 2008 IEEE International Electron Devices Meeting. IEEE, 2008.
    [19]. Pan, Andrew, and Chi On Chui. "Gate-induced source tunneling FET (GISTFET)." IEEE Transactions on Electron Devices 62.8 (2015): 2390-2395.
    [20]. Choi, Yang-Kyu, et al. "Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs." Japanese journal of applied physics 42.4S (2003): 2073.
    [21]. Verhulst, Anne S., et al. "Tunnel field-effect transistor without gate-drain overlap." Applied Physics Letters 91.5 (2007): 053102.
    [22]. Verhulst, Anne S., et al. "Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor." Journal of Applied Physics 107.2 (2010): 024518.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE