| 研究生: |
蔡博全 Tsai, Po-Chuan |
|---|---|
| 論文名稱: |
固相合成摻雜過渡金屬之CuInSe2 及其性能研究 Solid-state synthesis and characterisation of transition-metal-doped CuInSe2 |
| 指導教授: |
齊孝定
Qi, Xiao-Ding |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | CuInSe2 、過渡金屬 、脈衝雷射沉積 |
| 外文關鍵詞: | CuInSe2, Transition metals, Pulsed laser deposition |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗用純元素粉末做為前驅物,籍由固相合成法製作CuInSe2與CuIn0.9M0.1Se2 (M=Transition metal)之靶材,再將靶材利用脈衝雷射沉積法(PLD)成長薄膜。最後使用X光繞射(XRD)、X光能量譜(EDS)、掃描電子顯微術(SEM)、Hall 效應以及吸收光譜等分析方法,探討靶材及薄膜之結晶結構、組成成份、表面形貌以及光電性質,並比較摻雜前後其性質上之差異與改變。
XRD分析結果顯示CuInSe2於500°C燒結6小時後即可得到所要之單一純相,而CuIn0.9M0.1Se2則須在較高的溫度(600°C或700°C)燒結6小時,才能獲得所要之純相。EDS分析結果顯示合成之靶材成分非常接近化學劑量比,但Cu/In比稍少於1,由此推測應屬N型半導體,Hall效應分析證實了此結果。利用所製作之靶材,我們籍由PLD在室溫成功成長出CuInSe2與CuIn0.9M0.1Se2 之薄膜。測量結果顯示CuIn0.9M0.1Se2薄膜之晶粒明顯比CuInSe2薄膜之晶粒小,僅有若干奈米。雖然之前分析顯示靶材中Cu/In比稍少於1,但所成長之薄膜中的Cu/In比都略大於1,為P型半導體。吸收光譜分析顯示,摻雜過渡金屬之CuIn0.9M0.1Se2薄膜,其能隙值均大於未摻雜之CuInSe2薄膜。
In this study, bulk samples of CuInSe2 and CuIn0.9M0.1Se2 (M=transition metal) were synthesized from the Cu, In, Se and M powders by the solid state reaction method. The sintered pellets were used as the targets for the pulsed laser deposition (PLD) of thin films. The composition, structure, surface morphology, and optoelectronic properties of the targets and grown films were studied by a range of techniques, including X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), Hall effect, optical absorption spectroscopy, etc. The modification of the properties due to the M doping was investigated.
XRD analysis showed that a pure phase of CuInSe2 could be formed by sintering at 500 C for 6 hours, while CuIn0.9M0.1Se2 had to be sintered at some higher temperatures (i.e. at 600 or 700 C for 6 hours). EDS results showed that the compositions of the sintered samples were very close to the stoichiometry, except that the Cu/In ratio was slightly less than 1, suggesting that they should belong to the N type semiconductor. This was later confirmed by the Hall effect measurement. Using the sintered pellets as the targets, we successfully grew the CuInSe2 and CuIn0.9M0.1Se2 films at room temperature by the PLD technique. Characterization showed that the grain sizes of the CuIn0.9M0.1Se2 films, which were in the order of a few nanometers, were much smaller than that of the CuInSe2 film. Although the targets’ compositions were Cu/In < 1, the Cu/In ratio of all the grown films was measured to be slightly large than 1, indicating that they were P type semiconductors, which was indeed confirmed by the Hall effect. The band gaps of the grown films were measured from the optical absorption spectra, which showed that all the doped CuIn0.9M0.1Se2 films had a larger gap than the un-doped CuInSe2 film.
[1] A. E. Becquerel, Comt. Rend. Acad. Sci., vol. 9, p. 561, 1839.
[2] R. P. Gale, R. W. McClelland, D. B. Dingle, J. V. Gormle, R. M.Burgess, N. P. Kim, R. A. Mickelsen, B. F. Stanbery, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee,53,1990.
[3] Martin A. Green, Keith Emery, David L. King, Yoshihirokawa,Wilhelm Warta, Prog. Photovolt: Res. Appl., 15, 35, 2007.
[4]I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, Res. Appl. 16, 235, 2008.
[5] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egass, R.Noufi, Prog. Photovoltaics Res. Appl. 13, 209, 2005.
[6] W.N. Shafarman, R. Klenk, B.E. McCandless, J. Appl. Phys. 79, 7324, 1996.
[7] U. Rau, M. Schmidt, A. Jasenek, G. Hanna, H.W. Schock, Sol. Energy Mater. Sol. Cells 67, 137, 2001.
[8] S. Marsillac, Appl. Phys. Letters, 81, 1350-1352, 2002.
[9] M. Yuan, Chemistry of Material, 22, 285-287, 2010.
[10] J. Palm, Thin Solid Films, 451-452, 544-551, 2004.
[11] R.N. Bhattacharya, W. Batchelor, J.E. Granata, F. Hasoon, H.Wiesner, K. Ramanathan, J. Keane, and R.N. Noufi, Solar Energy Materials and Solar Cells, vol. 55, pp. 84-94, 1998.
[12] J. S. Park, Z. Dong, Sungtae Kim, and J. H. Perepezko, American Institute of Physics, pp. 3683-3691, 2000.
[13]F. Abou-Elfotouh, D. J. Dunlavy, T. J. Coutts, Solar Cells, 27, 1989.
[14] Fouad Abou-Elfotouh, D. J. Dunlavy, David Cahen, R. Noufi,L. L. Kazmerski and K. J. Bachmann. Solar Energy Research Institute, Golden, Colorado 80401, U.S.A.
[15]T. Dullweber et al., "Study of the effect of gallium grading in Cu(In,Ga)Se2", Thin Solid Films 361-362, pp. 478-481, 2000.
[16] S.H. Wei, A. Zunger, J. Appl. Phys. 78, 3846, 1995.
[17] P.D. Paulson, M.W. Haimbodi, S. Marsillac, R.W. Birkmire, W.N. Shafarman, J. Appl. Phys. 91, 10153, 2002.
[18] S. Marsillac, P.D. Paulson, M.W. Haimbodi, R.W. Birkmire, W.N. Shafarman, Appl. Phys. Lett. 81, 1350, 2002.
[19] J. Olejníček et al. / Thin Solid Films 519, 5329–5334, 2011.
[20] A. Luque, A Martı´, Phys. Rev. Lett. 78, 5014, 1997.
[21] K. W. Boer, Survey of Semiconductor Physics (Van Nostrand Reinhold, New York, 1990), pp. 201, 249, 617.
[22] C. Tablero, Solid State Commun., 133, 97, 2005.
[23] R. Teghil, L. D'Alessio, M. Zaccagnino, D. Ferro,V. Marotta, G. De Maria. Applied Surface Science 173, 233-241, 2001.
[24] Nakata T, Okada T, Maeda M. Deposition of ZnO film by pulsed laser deposition at room temperature. Applied Surface Science 368, 197–198, 2002
[25] S. Acquaviva, A. Perrone, A. Zocco, A. Klini, C. Fotakis. Thin Solid Films 373 , 266-272, 2000.
[26] A.A. Voevodin, M.S. Donley. Surface and Coatings Technology 82, 199-213, 1996.
[27] R. Teghil, L. D’Alessio, A. Santagata, M. Zaccagnino,D. Ferro, D.J. Sordelet. Applied Surface Science 210, 307–317 , 2003.
[28] Melissa Womack, Monica Vendan, Pal Molian. Applied Surface Science 221, 99–109, 2004.
[29] S. Ando, S. Endo, Y. Makita and T. Tsukamoto, “Preparation of CuInSe2 Thin Films by Pulsed Laser Ablation Technique Using CuInSe2 Bulk Crystal Targets”, Proceedings of SPIE, 3550, 156-168, 1998.
[30] A. Yoshida , N. Tanahashi , T. Tanaka , Y. Demizu , Y. Yamamoto, T. Yamaguchi, “Preparation of CuInSe2 thin films with large grain by excimer laser ablation”, Solar Energy Materials and Solar Cells, 50, 7-12, 1998.
[31] A. Tverjanovich, E. N. Borisov, E. S. Vasilieva, O. V. Tolochko, I. E. Vahhi, S. Bereznev, Y. S. Tveryanovich, “CuInSe2 thin films deposited by UV laser ablation”, Solar Energy Materials & Solar Cells, 90, 3624-3632, 2006.
[32] P. Victor, J. Nagaraju, S. B. Krupanidhi, “Pulsed excimer laser ablated copper indium diselenide thin films”, Solid State Communications, 116, 649–653, 2000.
[33] P. Luo, C. Zhu, G. Jiang, “Preparation of CuInSe2 thin films by pulsed laser deposition the Cu–In alloy precursor and vacuum selenization”, Solid State Communications, 146, 57–60,2008.
[34] C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, J.J. Moore, “Synthesis and processing of a Cu-In-Ga-Se sputtering target”, Thin Solid Films, 332, 340-344, 1998.
[35] A. Catalano Solar Energy Materials and Solar Cells 41/42, 205-217, 1996.
[36] D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire”, Applied Physics Letters, 83, 677-679, 2003.
[37] R. Teghil , L. D'Alessio , A. De Bonis , A. Galasso, P. Villani , A. Santagata .Thin Solid Films 515, 1411-1418, 2006.
[38] Mikel Sanz, Malgorzata Walczak, Rebeca de Nalda, Mohamed Oujja,Jose’ F. Marco , Javier Rodriguez , Jesu’s G. Izquierdo , Luis Ban˜ares , Marta Castillejo .Applied Surface Science 255, 5206-5210, 2009.
[39] L.V. Zhigilei, Applied.Physics.. A 76, 339, 2003.
[40] J.L. Shay, B. Tell, H.M. Kasper, L.M. Schiavone, Phys. Rev. B 7, 4485, 1973.
[41] J. Gonzalez-Hernandez, P.M. Gorley, P.P. Holrley, O.M. Vartsabyuk, Yu.V. Vorobiev, Thin Solid Films, 471, 403-404, 2002.
[42] M. Ortega-Lopez, A. Morales-Acevedo, Thin Solid Films 330, 96, 1998.
[43] C.J. Huang, T.H. Meen, M.Y. Lai, W.R. Chen. Solar Energy Materials & Solar Cells 82, 553-565, 2004.