| 研究生: |
曾建元 Tseng, Chien-Yuan |
|---|---|
| 論文名稱: |
北祁連山東草河蛇綠岩 The Dongcaohe Ophiolite at the North Qilian Mountains, NW China |
| 指導教授: |
蔡金郎
Tsai, Ching-Lang 楊宏儀 Yang, Houng-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 礦物包裹體 、不諧合純橄岩-橄長岩侵入體 、蛇綠岩 、北祁連山 、原特提斯 、同化作用 、海洋地殼 、鈉金雲母 |
| 外文關鍵詞: | mineral inclusion, aspidolite, dunite-troctolite intrusive body, syntexis, North Qilian, Proto-Tethys, ophiolite, oceanic crust |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
位於北祁連山俯衝雜岩帶南面的東草河蛇綠岩是一個大小為3×6 km2的構造移置岩塊。其下部岩石組合為多期次侵入的岩床狀堆晶純橄岩-橄長岩-斜(鈣)長岩-斜(鈣)長質輝長岩-輝長岩系列,其中可見不諧合的純橄岩-橄長岩侵入體。往上過渡到均質的輝長岩-蘇長質輝長岩系列,頂部則有輝綠岩質岩牆與玄武岩質熔岩。由岩石組合所反映出的礦物結晶順序為橄欖石±鉻尖晶石-斜長石-單斜輝石-斜方輝石-鈦鐵氧化物礦物。堆晶岩中的鉻尖晶石成分(Mg#: 42-66, Cr#: 41-57)類似于現今的洋殼特徵。堆晶岩石與均質岩石系列中的斜長石與單斜輝石成分變化,反映了岩漿結晶分異的過程且與現今的洋殼成分特徵相似。
不諧合純橄岩-橄長岩侵入體與堆晶純橄岩-橄長岩的鉻尖晶石中經常可見礦物包裹體。矽酸鹽類的礦物包裹體,主要是透輝石、頑火輝石、韮閃石、鈉金雲母(aspidolite)、方沸石、榍石、綠泥石、蛇紋石、鈣鐵榴石和鈣鋁榴石。透輝石是從岩漿中結晶而在鉻尖晶石結晶成長的過程中陷入。頑火輝石、韮閃石和鈉金雲母是在鉻尖晶石內的封閉系統中,由陷入的礦物和熔體反應形成的產物。方沸石可能是由陷入的分異熔體(evolved melt)或者熱水溶液生成。榍石、綠泥石、蛇紋石、鈣鐵榴石和鈣鋁榴石是次生礦物,是由橄欖石、輝石和角閃石在岩漿後期的熱水換質或者洋底變質作用中變質而成。整體而言,不諧合純橄岩-橄長岩侵入體比堆晶純橄岩-橄長岩中的鉻尖晶石礦物包裹體,富含更多的Ti、Na、H2O。這些礦物包裹體的成因,可以用下部海洋地殼的同化作用解釋。由地函上升的橄欖石-尖晶石飽和的熔體(olivine-spinel-saturated melt)侵入下部地殼並產生同化作用,過程中產生富Si、Ti、Na、H2O的混染熔體(modified melt),陷入鉻尖晶石後形成礦物包裹體,最後固結在下部地殼中形成不諧合純橄岩-橄長岩侵入體。
全岩地球化學共分析22個岩石樣本,包括深成岩組(純橄岩-橄長岩-晶鈣長岩-輝長岩-蘇長質輝長岩)12個,不諧合橄長岩2個 ,噴出岩組(輝綠岩-玄武岩)7個和1個截切均質蘇長質輝長岩的輝綠岩脈(diabase dike within gabbronorite)。輝綠岩-玄武質熔岩與輝綠岩脈,其全岩地球化學成分與N-MORB類似。然而,地化特徵上,玄武質熔岩比輝綠岩含有較多的不相容元素(如Th、U、Nb和Ta等)。這些玄武質熔岩可能是軸下岩漿庫(axial magma chamber)的岩漿加熱經熱水換質輝綠岩牆,造成輝綠岩部份熔融並且與這些岩漿產生同化混染,最後上升並固結在輝綠岩牆中。深成岩組經模擬計算所得到平衡熔體的REE成分與輝綠岩-玄武岩相似,表明輝綠岩-玄武岩是由深成岩組結晶分異後所殘餘的熔體固結而成。由地球化學所作的構造岩漿判別,東草河蛇綠岩產於大洋中脊或者是成熟的弧後盆地環境。
東草河蛇綠岩的年代學係利用SHRIMP鋯石U-Pb定年法完成。由蘇長質輝長岩中的鋯石所獲得的206Pb/238U加權平均年齡為497 ± 7 Ma,可能代表東草河蛇綠岩形成或者是構造侵位的年齡。
共完成13個樣本的Nd-Sr同位素分析,其中輝長岩-蘇長質輝長岩7個,輝綠岩-玄武岩6個。所有樣本(除了樣本12A12,另有其他因素外)的εNd(t) (t = 497 Ma)值落在4.0~6.1之間,顯示它們具有同源關係。部分樣本的Sr同位素已受海水或蝕變作用的影響而產生遷變,無法反映原始的同位素特徵。新鮮蘇長質輝長岩的(87Sr/86Sr)t值在0.7028~0.7030之間。透過εNd(t)對(87Sr/86Sr)t的投圖,可以發現這些蘇長質輝長岩落在地函關連線上(mantle correction line),顯示東草河蛇綠岩能夠反映古祁連洋的地函特徵。
東草河蛇綠岩的全岩地球化學與Nd-Sr同位素特徵,不像太平洋型的N-MORB,而類似於印度洋型,反映了特提斯構造域的特徵。所以,東草河蛇綠岩是原特提斯洋的海洋地殼殘片。
對於北祁連造山帶的大地構造而言,東草河蛇綠岩有下列幾項重要的地質意義。(1)東草河蛇綠岩發育岩牆群,是中-快速擴張脊的產物。(2)東草河蛇綠岩是古祁連洋的洋殼殘片,能夠具體代表古祁連洋(原特提斯洋)軟流圈地函的同位素特徵。(3)東草河蛇綠岩的鋯石年代學為497±7 Ma,對照老虎山蛇綠岩(453±4 Ma)與玉石溝蛇綠岩(550±17 Ma)的年代,暗示著整個北祁連洋盆的演化歷史可達100 Ma,屬大洋盆演化的格局。(4)結合東草河蛇綠岩、羅列根山火山岩帶、門源弧後盆地與祁連地塊上島弧型侵入岩體(阿拉斯加型岩體)的產出,暗示著古祁連洋岩石圈在寒武-奧陶紀時曾向南隱沒。
The Dongcaohe ophiolite, a tectonic block with an areal extent of 3 km×6 km, is a Proto-Tethyan ophiolite in the North Qilian Mountains and is associated with a volcanic belt and a mature backarc basin along the northern margin of the Qilian Block. It consists of an intrusive sequence and an extrusive sequence. The lower part of the intrusive sequence consists of modally cyclic layers of cumulate dunites, troctolites, anorthosites, anorthositic gabbros, and gabbros intruded by many small discordant dunite-troctolite layered bodies. This layered cumulates series grades upward into an isotropic gabbro series in the upper part, which consists of gabbros and gabbronorites. The intrusive sequence is overlain by the extrusive sequence of sheeted diabasic dikes and basaltic lavas. Order of mineral crystallization for the intrusive sequence is olivine±Cr-spinel, plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxide minerals. The Cr-spinel with Mg# = 42-46 and Cr# = 41-57 from the layered cumulates are compositionally very similar to those from the present-day abyssal peridotite. The compositional variations of the plagioclase and clinopyroxene in the intrusive sequence reflect the crystallization of magmas compositionally analogous to the present-day oceanic crust.
Diopside, enstatite, pargasite, aspidolite, analcime, chlorite, serpentine, titanite, andradite, and grossular are found as mineral inclusions in chromian spinels in the troctolites and dunites of the layered cumulate series and discordant dunite-troctolite layered bodies. The mineral inclusions in the layered cumulate series are remarkably different in species and chemistry from those in the discordant dunite-troctolite layered bodies. Diopside was liquidus phase of the magmas and was enclosed by the growing chromian spinels to become mineral inclusions. Enstatite, pargasite and aspidolite were the closed-system reaction products of the trapped mineral phases and residual melts. Analcime crystallized or precipitated directly from the evolved entrapped melt or hydrothermal solution in the inclusions. Chlorite, serpentine, titanite, andradite, and grossular are of secondary or metamorphic origin and were produced by alteration from olivine, pyroxene, or amphibole during post-magmatic hydrothermal alteration or subsequent sea-floor metamorphism of the ophiolite.
The mineral inclusions from the discordant dunite-troctolite layered bodies contain more Ti, Na, and H2O than those in dunite and troctolite from the layered cumulate series. Assimilation of the lower oceanic crust by the intruding olivine-spinel saturated magma from the upper mantle produced a modified magma rich in Si, Ti, Na, and H2O. Entrapment of the modified melt by the crystallizing Cr-spinel fromed the mineral iclusions in the Cr-spinels. This modified magma eventually solidified as the discordant olivine-troctolite layered bodies dispersed in the layered cumulate series.
The geochemical compositions of the basaltic lavas and diabasic rocks are very similar to those of the present-day mid-ocean ridge basalt. The basaltic lavas contain more incompatible elements (e.g., Th, U, Nb, Ta etc.) in concentration than the diabasic rocks. The modeled REE concentrations of the melts in equilibrium with the cumulate rocks are comparable with those of the basaltic lavas and diabasic rocks, implying that the basaltic lavas and diabasic rocks were solidified from the magma which was derived from the primary magma after the separation of the cumulate rocks. The geochemical characteristics of the basaltic and diabasic rocks show that the Dongcaohe ophiolite was originated in a tectonomagmatic environment of mid-ocean ridge of a major ocean or a mature backarc basin.
The zircon grains separated from the gabbronorite have an SHRIMP average 206Pb/238U weighted age of 497 ± 7 Ma, which may considered as the tectonic emplacement age or formation age of the Dongcaohe ophiolite. The field occurrence, mineral chemistry and whole-rock compositions indicate that the Dongcaohe ophiolite represents a well-preserved fragment of the Proto-Tethyan oceanic crust consisting of a complete oceanic crustal section with layered cumulates in the lower, isotropic rocks in the middle, and to sheeted dikes and lava flows in the upper part.
As manifested by the Dongcaohe ophiolite, the εNd(t) (t = 497 Ma) of the Proto-Tethyan oceanic asthenosphere was 4.0-6.1, which is interestingly more like the Indian type MORB than the Pacific type. Occurrence of the Dongcaohe ophiolite, Lolieygenshan volcanic belt, Menyuan backarc basin, Alaskan-type mafic-ultramafic intrusions, and arc-type granitoids on the Qilian Block suggest a southward subduction for the Paleo-North-Qilian oceanic lithosphere in the late-Cambrian to early Ordovician period.
參考文獻
中文部份
王荃、劉雪亞 (1976) 我國西部祁連山的古海洋地殼及其大地構造意義。地質科學,1:42-55。
王荃、劉雪亞 (1981) 祁連山加里東期的多旋迴雙變質帶。地質出版社,92-101。
王雲山、陳基娘 (1987a) 青海省及比鄰地區變質地帶與變質作用。中華人民共和國地質礦產部地質專報,第6號。
王雲山、陳基娘 (1987b) 青海省及其毗鄰地區變質地質及變質作用。北京,地質出版社,268頁。
左國朝、劉寄陳 (1987) 北祁連早古生代大地構造演化。地質科學,1:14-24。
左國朝、張淑玲、程建生、築彥學、王彥斌、吳漢泉 (1995) 祁連地區蛇綠岩帶劃分及其構造意義。地質科學,4:1-10。
左國朝、張淑玲、程建生 (1996) 祁連地區蛇綠岩帶劃分及其構造意義。張旗主編:蛇綠岩與地球動力學研究,地質出版社,129-134。
左國朝、吳漢泉 (1997) 北祁連中段早古生代雙向俯衝─碰撞造山模式剖析。地球科學進展,12:315-323。
左國朝、劉義科、張召崇 (2002) 北祁連造山帶中─西段陸殼殘塊群的構造─地層特徵。地質科學,37(3): 302-312。
史仁燈、楊經綏、吳才來、Wooden, J (2004) 北祁連玉石溝蛇綠岩形成於晚震旦 世的SHRIMP年齡證據。地質學報,78(5):649-657。
宋述光 (1997) 北祁連山俯衝雜岩帶的構造演化。地球科學進展,12(4):352-365。
宋述光、張立飛、Niu, Y. L.、宋彪、張貴賓、王乾杰 (2004) 北祁連山榴輝岩鋯石SHRIMP定年及其構造意義。科學通報,49(6):592-595。
李春昱、劉仰文、朱寶清 (1978) 秦嶺及祁連山構造發展史。國際交流地質學術論文集(1)。北京,地質出版社,174-187。
林宗祺 (2003) 北祁連造山帶中西段基盤岩地球化學及年代學研究。國立成功大學碩士學位論文,131頁。
周德進、陳雨、張旗、李秀云 (1997) 北祁連山南側阿拉斯加型岩體的發現及地質意義。地質科學,32(1): 122-127。
侯青葉、趙志丹、張宏飛、張本仁、陳岳龍 (2005) 北祁連玉石溝蛇綠岩印度洋MORB型同位素組成特徵及其地質意義。中國科學D輯,35 (8):710-719。
侯青葉、趙志丹、張本仁、張宏飛、張利、陳岳龍 (2006) 青藏高原東北緣特提斯構造域界線的探討。岩石學報,22(3): 567-577。
許志琴、徐惠芬、張建新、李海兵、朱志直、曲景川、陳代璋、徐金祿、楊開春(1994) 北祁連走廊南山加里東俯沖雜岩增生地體及其動力學。地質學報,68(1):1-15。
馬文璞 (1992) 區域構造解析-方法理論和中國板塊構造,北京:地質出版社,308頁。
郝梓國、王希斌、鮑佩聲 (1989) 新疆西准噶爾地區兩類蛇綠岩的地質特徵及其成因研究。岩石礦物學雜誌,8:299-310。
黃汲清、張正坤、張之孟 (1965) 中國的優地槽和冒地槽以及它們的多旋迴發展。北京,中國工業出版社,211-227。
黃汲清、任紀舜、姜春發、張之孟、許志琴 (1977) 中國大地構造基本輪廓。地質學報,2:14-29。
夏林圻、夏祖春、徐學義 (1995a) 北祁連山構造—火山岩漿演化動力學。西北地質科學,16(1):1-27。
夏林圻、夏祖春、徐學義 (1995b) 北祁連山元古代末—寒武紀海相火山作用與成礦作用的關係。西北地質科學,16(1):28-37。
夏林圻、夏祖春、徐學義 (1996) 北祁連山海相火山岩岩石成因。北京,地質出版社,共153頁。
張建新、許志琴、陳文等 (1997) 北祁連中段-增生雜岩/火山弧的時代探討。岩石礦物雜誌,16(2):112-119。
張旗、孫曉猛、周德進 (1997a) 北祁連蛇綠岩的特徵、形成環境及其構造意義。地球科學進展,12: 366-393。
張旗、王岳明、錢青 (1997b) 甘肅景泰縣老虎山地區蛇綠岩及其上覆岩系中枕狀熔岩的地球化學特徵。岩石學報,13:92-99。
張旗、郭原生、王岳明、錢青、周德進、陳雨、賈秀琴、韓松 (1997c) 北祁連地區鎂鐵─超鎂鐵岩的多樣性。地球科學進展,12(5):324-329。
張旗、Chen, Y.、周德進、錢青、賈秀琴、韓松 (1998) 北祁連大岔大坂蛇綠岩的地球化學特徵及其成因。中國科學(D)輯,28(1):30-34。
張旗、王焰、錢青 (2000) 北祁連早古生代洋盆是裂陷槽還是大洋盆─與葛肖虹討論。地質科學,35(1):121-128。
張旗、周國慶 (2001) 中國蛇綠岩。科學出版社,182頁。
陳雨、周德進、王二七、李秀云 (1995) 北祁連肅南縣大岔大阪蛇綠岩中玻安岩系岩石的發現及其地球化學特徵。岩石學報,11(增刊):146-153。
馮益民、何世平 (1995a) 北祁連蛇綠岩的地質地球化學研究。岩石學報,11:125-146。
馮益民、何世平 (1995b) 祁連山及其鄰區大地構造基本特徵─兼論早古生代海相火山岩的成因環境。西北地質科學,16(1):92-103。
馮益民、何世平 (1996) 祁連山大地構造與造山作用。北京,地質出版社,135頁。
馮益民 (1997) 祁連造山帶研究概況─歷史、現狀及展望。地球科學進展,12(4):307-314。
葛肖虹、劉俊來 (1999) 北祁連造山帶的形成與背景。地學前緣,6(4):223-230。
葛肖虹、劉俊來 (2000) 被肢解的「西域克拉通」。岩石學報,16(1):59-66。
錢青、孫曉猛、張旗、韓松、賈秀琴 (1999) 北祁連九個泉蛇綠岩及其上覆岩系的岩石地球化學特徵和地球動力學意義。地質論評,45:1038-1046。
蕭序常、陳國銘、朱志直 (1978) 祁連山古蛇綠岩帶的地質構造意義。地質學報,4:281-295。
謝忠穎 (2002) 北祁連褶皺帶中-東段門源盆地周圍火山岩岩石學及地球化學研究,國立成功大學地球科學所碩士論文,147頁。
英文部分
Anderson, T., O’reilly, S. Y., & Griffin, W. L. (1984) The trapped fluid phase in upper mantle xenoliths from Victoria, Australia. Contributions to Mineralogy and Petrology 88: 72-85.
Anonymous. (1972) Penrose Field Conference on Ophiolites. Geotimes 17, 24-25.
Arai, S. (1992) Chemistry of chromium spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine 56: 173-184.
Arai, S., Matsukage, K., Isobe, E., & Vysotskiy, S. (1997) Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochimica et Cosmochimica Acta 61: 671-675.
Arai, S. & Matsukage, K. (1998) Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: a comparison between abyssal and alpine-type podifrom chromitites. Lithos. 43: 1-14.
Arai, S., Uesugi, J., & Ahmed, A. H. (2004) Upper crustal podiform chromitite from the northern Oman ophiolite as the stratigraphically shallowest chromitite in ophiolite and its implication for Cr concentration. Contributions to Mineralogy and Petrology 147: 145-154.
Arndt, N. T. & Goldstein, S. L. (1989) An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics 161: 210–212.
Augé, T. (1987): Chromite deposits in the northern Oman ophiolite: Mineralogical constraints. Mineralium Deposita 22: 1-10.
Barnes, S. J. & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42: 2279-2302.
Beard, J. S. & Hopkinson, L. (2000) A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry. Journal of Geophysical Research 105: 16527-16539.
Bédard, J. H. (1993) Oceanic crust as a reactive filter: Synkinematic intrusion, hybridization, and assimilation in an ophiolitic magma chamber, western Newfoundland. Geology 21:77–80
Bédard, J. H. (1994) A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chemical Geology 118: 143–153.
Bédard, J. H. (2001) Parental magmas of the Nain plutonic suite anorthosites and mafic cumulates: a trace element modeling approach. Contributions to Mineralogy and Petrology 141: 747-771.
Bédard, J. H. (2005) Partitioning coefficients between olivine and silicate melts. Lithos 83: 394-419.
Bédard, J.H. & Hébert, R. (1996) The lower crust of the Bay of Islands ophiolite, Canada: petrology, mineralogy, and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. Journal of Geophysical Research 101: 25105–25124.
Bédard, J. H. & Hébert, R. (1998) Formation of chromitites by assimilation of crustal pyroxenites and gabbros into peridotitic intrusions—North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada. Journal of Geophysical Research 103: 5165–5184
Bédard, J. H., Hébert, R., Berclaz, A. & Varfalvy, V. (2000) Syntexis and the genesis of lower oceanic crust, in Dilek, Y., Moores, E. M., and Nicolas, A., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, 105-119.
Bian, Q. T., Li, H.D.,Pospelov, I., Yin, L. M., Li, H. S., Zhao, D. S., Chang, C. F., Luo, X. U., Gao, S. L., Astrakhantsev, O. & Chamov, N. (2004) Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences 23: 577–596
Black, L. P., Kamo, S. L., Allen, C. M., et al. (2003) TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology 200: 155~170.
Bloomer, S. H., Meyer, P. S., Dick, H. J. B., Ozawa, K. & Natland, J. H. (1991). Textural and mineralogical variations in gabbroic rocks from Hole 735B, in Von Herzen, R. P., Robinson, P. T., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results 118: College Station, Texas, Ocean Drilling Program, p. 21-39.
Bosch, D., Jamais, M., Boudier, F., Nicolas, A., Dautria, J.-M. & Agrinier, P. (2004). Deep and high-temperature hydrothermal circulation in the Oman ophiolite: Petrological and isotopic evidence. Journal of Petrology 45: 1181–1208.
Brenan, J. M., Shaw, H. F., Phinney, D. L., and Ryerson, F. J. (1994) Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts: Earth and Planetary Science Letters 128: 327–339.
Brongniart, A. (1821) Sur le gisement ou position relative des ophiolites, eupotides, jaspes, etc. dans quelques parties des Apennins: Annales des Mines, Paris, 6, p177-238.
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, N. F. and Otto, J. B. (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10: 516-519.
Büchl, A., Münker, C., Mezger, K., & Hofmann, A. W. (2002) High precision Nb/Ta and Zr/Hf ratios in global MORB. Geochimica et Cosmochimica Acta 66, A108 (Spec. Suppl.).
Cameron, E. N. (1979) Titanium bearing oxide minerals of the critical zone of the Eastern Bushveld. American Mineralogist 64, 140-150.
Carman, J. H. (1974) Synthetic sodium phlogopite and its two hydrates: Stabilities, properties, and mineralogic implication. American Mineralogist 59, 261-273.
Coleman, R. G. (1971) Plate tectonic emplacement of upper mantle peridotites along continental edges. Journal of Geophysical Research 76: 1212-1222.
Coleman R G. (1977) Ophiolites, Ancient Oceanic Lithosphere? New York: Springer, 229p.
Coleman, R. G. (1984) The diversity of ophiolites. Geol. Mijinbouw 63: 141-150.
Compston, W., Williams, I. S., & Meyer C. (1984) U-Pb gesochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Proceedings of the 14th Lunar and Planetary Science Conference, Part 2. Journal of Geophysical Research 89: B525-534.
Constantin, M., Hékinian, R., Bideau, D., & Hébert, R. (1996) Construction of the oceanic lithosphere by magmatic intrusions: Petrological evidence from plutonic rocks formed along the fast-spreading East Pacific Rise. Geology 24(8): 731-734.
Constantin, M. (1999) Gabbroic intrusions and magmatic metasomatism in harzburgites from the Garrett transform fault: implications for the nature of the mantle-crust transition at fast-spreading ridges. Contributions to Mineralogy and Petrology 136: 111-130.
Coogan, L. A., Gillis, K. M., MacLeod, C. J., Thompson, G. M., & Hekinian, R. (2002) Petrology and geochemistry of the lower ocean crust formed at the East Pacific Rise and exposed at Hess Deep: A synthesis and new results. Geochemistry, Geophysics, Geosystems 3. DOI 10.1029/2001GC000230.
Coogan, L. A. (2003) Contaminating the lower crust in the Oman ophiolite. Geology 31: 1065-1068.
Coogan, L. A., Mitchell, N. C., & O’hara, M. J. (2003) Roof assimilation at fast spreading ridges: An investigation combining geophysical, geochemical, and field evidence. Journal of Geophysical Research 108(B1), 2002, doi:10.1029/2001JB001171.
Coombs, D. S., Kawachi, Y., Houghton, B. F., Hyden, G., Pringle, I. J., & Williams, J. G. (1977) Andradite and andradite-grossular solid solutions in very low-grade regionally metamorphosed rocks in southern New Zealand. Contributions to Mineralogy and Petrology 63: 229-246.
Danyushevsky, L. V., Perfit, M. R., Eggins, S. M., & Falloon, T. J. (2003) Crustal origin for coupled ‘ultra-depleted’ and ‘plagioclase’ signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros transform fault, East Pacific rise. Contributions to Mineralogy and Petrology 144:619–637.
Danyushevsky, L. V., Leslie, R. A. J., Crawford, A. J., & Durance, P. (2004) Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. Journal of Petrology 45: 2531–2553.
Dewey, J. F. (1976) Ophiolite obduction. Tectonophysics 31: 93-120.
Dick, H. J. B. & Bullen, T. (1984) Chromite as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 54- 76.
Dietz, R. S. (1963) Alpine serpentines as oceanic rind fragments. Geological Society of America Bulletin 74: 947-952.
Dilek, Y. & Moores, E. M. (1990) Regional tectonics of Eastern Mditerranean ophiolites, in Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos C., eds., Ophiolite, Oceanic Crustal Analogues: Proceedings of the Symposium “Troodos 1987”: Nicosia, Cyprus, The Geological Survey Department, 295-309.
Dilek, Y., Moores, E. M., & Furnes, H. (1998) Structure of modern oceanic crust and ophiolites and implications for faulting and magmatism at oceanic spreading centers. in Buck, R., Karson, J., Delaney, P., and Lagabrielle, Y., eds., Faulting and Magmatism at Mid-ocean Ridges: American Geophysical Union Monograp 106: 219-266.
Dilek, Y., Moores, E. M., Elthon, D., & Nicolas, A. (1999) Ophiolite and oceanic crust: New insights from field studies and the Ocean Drilling Program. GSA Today 9: 30-32.
Dilek, Y., Moores, E. M., Elthon, D. & Nicolas, A., eds. (2000) Ophiolites and Ocean Crust: New Insights from Field Studies and the Ocean Drilling Program. Geological Society of America, Special Paper 349, 552pp.
Dilek, Y. (2003) Ophiolite concept and its evolution, in Dilek, Y. and Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought: Boulder, Colorado, Geological Society of America Special Paper 373, 1-16.
Dilek, Y. & Newcomb, S., eds. (2003) Ophiolite concept and evolution of geological thought. Geological Society of America, Special Paper 373, 504pp.
Dubois-Côté, V., Héberta, R., Dupuisa, C., Wangb, C. S., Lib, Y. L., & Dostalc, J. (2005) Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology 214: 265– 286.
Edwards, S. J., Pearce, J. A., & Freeman, J. (2000) New insights concerning the influence of water during the formation of podiform chromitite, in Dilek, Y., Moores, E. M., Elthon, D. and Nicolas, A., eds., Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, 139-17.
Eissen, J.-P., Nohara, M., Cotten, J., & Hirose, K. (1994) North Fiji Basin basalts and their magma sources: Part I, incompatible element constraints. Marine Geology 116 (1/2): 153–178.
Elthon, D. (1987) Petrology of gabbroic rocks from the Mid-Cayman rise spreading center. Journal of Geophysical Research 92: 658-682.
Elthon, D., Stewart, M. & Ross, D. K. (1992) Compositional trends of minerals in oceanic cumulates. Journal of Geophysical Research 97: 15189-15199.
Escrig, S., Capmas, F., Dupré, B. & Allègre, C. J., (2004) Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 431: 59-63.
Flower, M. F. J., (2003) Ophiolite, historical contingency, and the Wilson cycle, in Dilek, Y., and Newcomb, S., eds., Ophiolite Concept and Evolution of Geological Thought: Boulder, Colorado, Geological Society of America Special Paper 373: 111-135.
Gaetani, G. A., Grove, T. L., & Bryan, W. B. (1993) The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365: 332-334.
Gehrels, G. E., Yin, A., & Wang, X. F. (2003a) Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research 108(B9), 2423, doi: 10.1029/2002JB001876
Gehrels, G. E., Yin, A., & Wang, X.-F. (2003b) Detrital zircon geochronology of the northeastern Tibetan Plateau. Geological Society of America Bulletin 115: 881-896.
Gillis, K. M., Thompson, G., & Kelley, D. S. (1993) A view of the lower crustal component of hydrothermal systems at the mid-Atlantic ridge. Journal of Geophysical Research 98: 19597-19619.
Gillis, K. M. & Coogan, L. A. (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. Journal of Petrology 43:2075–2095.
Godard, M., Dautria, J.-M. & Perrin, M. (2003) Geochemical variability of the Oman ophiolite lavas: relationship with spatial distribution and paleomagnetic directions. Geochemistry, Geophysics, Geosystems 4 (6), 8609, doi:10.1029/2002GC000452.
Godard, M., Bosch, D., & Einaudi, F. (2006) A MORB source for low-Ti magmatism in the Semail ophiolite. Chemical Geology 234: 58-78.
Gutzmer, J., Pack, A., Lüder, V., Wilkinson, J. J., Beukes, N. J., & Niekerk, H. S. (2001) Formation of jasper and andradite during low-temperature hydrothermal seafloor metamorphism, Ongeluk Formation, South Africa. Contributions to Mineralogy and Petrology 142: 27-42.
Hanan, B. B., Blichert-Toft, J., Pyle, D. G., & Christie, D. M. (2004) Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432: 91-94.
Hart, S. R. (1988) Heterogeneous mantle domains: Signatures, genesis, and mixing chronologies. Earth and Planetary Science Letters 90: 273-296.
Hawkins, J. W. (1977). Petrological and geochemical characteristics of marginal basin basalts, in Talwani, M. & Pitman, W. C., Ⅲ, eds., Island Arcs, Deep Sea Ttrenches and Back arc Basins, volume 1: Washington, D. C., American Geophysical Union, 353-365.
Himmelberg, G. R. & Loney, R. A. (1995) Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, Southeastern Alaska. US Geological Survey, Professional Papers 1564, 1-47.
Hess, H. H. (1955) Serpentines, orogeny and epeirogeny. Geological Society of America Special Paper 62, 391-408.
Hess, H. H. (1962) History of ocean basins. in Engel, A. E. J., Lames, H. L., and Leonard, B. F., eds., Petrologic Studies: A Volume in Honor of A. F. Buddington: New York, Geological Society of America: 599-620.
Hess, H. H. (1965) Mid-ocean ridges and tectonics of the sea floor, in Whittard, M. F. & Bradshaw, R. eds., Submarine Geology and Geophysics: Proceedings of the 17th Symposium of the Colston Research Society: London, Butterworths, 317-334.
Hey, M. H. (1954) A new review of the chlorites. Mineralogical Magazine 30: 277-292.
Hofmann, A. W. (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385: 219-229.
Holloway, J. R. (1973) The system pargasite-H2O-CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid, Ⅰ. Experimental results to 8 kbar. Geochimica et Cosmochimica Acta 37, 991-1020.
Hoskin, P. W. O. & Ireland, T. R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28: 627-630.
Hoskin, P. W. O. & Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis, in Hanchar, J.M., and Hoskin, P.W.O., eds., Zircon: Reviews in Mineralogy and Geochemistry 53: 27–62
Irvine, T. N. (1975) Crystallization sequences in the Muskox intrusion and other layered intrusions. Ⅱ. Origin of chromite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta 39: 991-1020.
Irvine, T. N. (1982) Terminology for layered intrusions. J. Petrol. 23: 127-162.
Ishiwatari, A. (1985a) Alpine ophiolites: product of low-degree mantle in a Mesozoic transcurrent rift zone. Earth and Planetary Science Letters 76: 93-108.
Ishiwatari, A. (1985b) Igneous petrogenesis of the Yakuno ophiolite (Japan) in the context of the diversity of ophiolites. Contributions to Mineralogy and Petrology 89: 155-167.
Jahn, B. M. (1999). Sm-Nd isotope tracer study of UHP metamorphic rocks: implication for continental subduction and collisional tectonics. International Geology Review 41: 859-885.
Johan, Z. (1986) Chromite deposits in the Massif du Sud ophiolite, New Caledonia: genetic considerations. In: Chromites, UNESCO’s IGCP-197 Project on Metallogeny of Ophiolites, Theophrastus Publications, Athens pp. 311-339.
Johan, Z., Dunlop, H., Le Bel, L., Robert, J. L., & Volfinger, M. (1983) Origin of chromite deposits in ophiolitic complexes: evidence for a volatile and sodium-rich reducing fluid phase. Fortschritte der Mineralogie 61: 105-107.
Johnson, D. M., Hooper, P. R., & Conrey, R. M. (1999) XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Advances in X-ray Analysis 41: 843-867.
Kamenetsky, V. S. & Gurenko, A. A. (2007) Cryptic crustal contamination of MORB primitive melts recorded in olivine-hosted glass and mineral inclusions. Contributions to Mineralogy and Petrology 153: 465–481
Kelemen, P. B., Johnson, K. T. M., Kinzler, R. J., & Irving, A. J., (1990) High-field-strength element depletions in arc basalts due to mantle-magma interaction: Nature 345: 521–524.
Keppler, H. (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids: Nature 380: 237–240.
Koepke, J., Feig, S. T., Snow, J., & Freise, M. (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology 146: 414–432.
Koepke, J., Feig, S.T., & Snow, J. (2005) Hydrous partial melting within the lower oceanic crust. Terra Nova 17: 286–291.
Koepke, J., Berndt, A. J., Sandrin, A., Feig, T., & Holtz, A. F. (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology 153: 67–84.
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist 68: 277-279.
Lagabrielle, Y. and Cannat, M. (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18: 319-322.
Lagabrielle, Y., Goslin, J., Martin, H.N., Thirot, J.-L., Auzende, J.-M. (1997) Multiple active spreading centres in the hot North Fiji Basin (Southwest Pacific); a possible model for Archaean seafloor dynamics? Earth and Planetary Science Letters 149: 1–13.
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W., & Guo Y. Z. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Canadian Mineralogist 35: 219-246.
Leblanc, M. & Ceuleneer, G. (1992) Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos. 27, 231-257.
Lee, Y. S., Nishimura, S., & Min, K. D. (1997) Paleomagnetotectonics of east Asia in the Proto-Tethys ocean. Tectonophysics 270: 157-166.
Li, C., Ripley, E. M., Sarkar, A., Shin, D., & Maier, W. D. (2005) Origin of phlogopite-orthopyroxene inclusions in chromites from the Merensky Reef of the Bushveld Complex, South Africa. Contributions to Mineralogy and Petrology 150: 119-130.
Li, X. H., Su, L., Song, B., & Liu, D. Y. (2004) SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chinese Science Bulletin 49: 420-422.
Li, X. H., Su, L., Chung, S. L., Li, Z. X., Liu, Y., Song, B., & Liu, D. Y. (2005) Formation of the Jingchuan ultramafic intrusion and world’s third Largest Ni-Cu sulfide deposit: Associated with the ~ 825 Ma south China mantle plume? Geochemistry, Geophysics, Geosystems 6(11):1-16.
Liew, T.C. & Hofmann, A. W. (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contributions to Mineralogy and Petrology 98:129–138.
Lissenberg, C. J., Bédard, J. H., & van Staal, C. R. (2004) The structure and geochemistry of the gabbro zone of the Annieopsquotch ophiolite, Newfoundland: implications for lower crustal accretion at spreading ridges. Earth and Planetary Science Letters 229: 105-123.
Lissenberg, C. J., van Staaal, C. R., Bédard, J. H., & Zagorevski, A. (2005) Geochemical constraints on the origin of the Annieopsquotch ophiolite belt, Newfoundland Appalachains. Geological Society of America Bulletin 117: 1413-1426.
Liou, J. G. (1971): Analcime equilibria. Lithos. 4: 389-402.
Liou, J. G., Wang, X. M., Coleman, R. G., Zhang, Z. H. M., & Maruyama, S. (1989) Blueschists in major suture zones China. Tectonics 8: 609-619.
Lorand, J. P. & Cottin, J. Y. (1987) Na-Ti-Zr-H2O-rich mineral inclusions indicating postcumulus chrome-spinel dissolution and recrystallization in the western Laouni mafic intrusion, Algeria. Contributions to Mineralogy and Petrology 97, 251-263.
Lorand, J. P. & Ceuleneer, G. (1989) Silicate and base-metal sulfide inclusions in chromites from the Maqsad area (Oman ophiolite, Gulf of Oman): A model for entrapment. Lithos. 22, 173-190.
Loucks, R.R. (1990) Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology 18: 346–349.
Ludwig, K. R. (2000) Isoplot/Ex version 2.4.: A Geochronological Toolkit for Microsoft Excel, Berkeley Geochron Centre Spec Publ. 1-56
Luth, W. C. (1967) Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O, Ⅰ Inferred phase relations and petrologic implications. Journal of Petrology 8: 372-416.
MacNeil, A. M. & Edgar, A. D. (1987) Sodium-rich metasomatism in the upper mantle: implications of experiments on the pyrolite-Na2O-rich fluid system at 950oC, 20 kbar. Geochimica et Cosmochimica Acta 51: 2285-2294.
Mahoney, J. J., Frei, R., Tejada, M. L. G., Mo, X.-X., Leat, P. T. & Nägler, T. F. (1998) Tracing the Indian Ocean mantle domain through time: isotope results from old west Indian, East Tethyan, and South Pacific seafloor. Journal of Petrology 39: 1285–1306.
Matsukage, K. & Arai, S. (1998) Jadeite, albite and nepheline as inclusions in spinel of chromitite from Hess Deep, equatorial Pacific: their genesis and implications for serpentinite diapir formation. Contributions to Mineralogy and Petrology 131: 111-122.
Mattern, F. & Schneider, W. (2000) Suturing of the Proto- and Paleo-Tethys oceans in the western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences 18: 637–650.
Mattinson, C. G., Wooden, J. L., Liou, J. G., Bird, D. K., & Wu, C. L. (2006) Age and duration of eclogites metamorphism north Qaidam HP/UHP terrane, western China. American Journal of Science 306: 683-711.
McElduff, B. & Stumpfl, E. F. (1991) The chromite deposits of the Troodos complex, Cyprus- Evidence for the role of a fluid phase accompanying chromite formation. Mineralium Deposita 26: 307-318.
Melcher, F., Grum, W., Simon, G., Thalhammer, T. V. & Stumpfl, E. F. (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhtan: a study of solid and fluid inclusions in chromite. Journal of Petrology 38: 1419-1458.
Meng, Q. R. & Zhang, G. W. (2000) Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics 323: 183–196
Meschede, M. (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology 56: 207-218.
Meyer, P. S., Dick, H. J. B. & Thompson, G. (1989) Cumulate gabbros from the Southwest Indian Ridge, 54ºS-7º16´E: implications for magmatic processes at a slow spreading ridge. Contributions to Mineralogy and Petrology 103: 44-63.
Michael, P. J. & Schilling, J.-G. (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochimica et Cosmochimica Acta 53: 3131–3143
Michael, P. J. & Cornell, W. C. (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. Journal of Geophysical Research 103: 18325–18356.
Miyashiro, A. (1973) The Troodos complex was probably formed in an island arc. Earth and Planetary Science Letters 19: 218-224.
Moores, E. M. (1982) Origin and emplacement of ophiolites. Reviews of Geophysics 20: 735-760.
Moores, E. M. & Jackson, E. D. (1974) Ophiolites and oceanic crust. Nature 250: 136-139.
Moores, E. M., Kellogg, L. H., & Dilek, Y. (2000) Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: A resolution of the “ophiolite conundrum”:, in Dilek, Y., Moores, E. M., Elthon, D., & Nicolas, A., eds., Ophiolite and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, p3-12.
Natland, J. H., Meyer, P. S., Dick, H. J. B., & Bloomer, S. H. (1991) Magmatic oxides and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent, in: Von Herzen, R. P. et al., eds., Proc, Ocean Drill. Prog., Sci. Results, vol. 118, Ocean Drilling Program, College Station, TX, pp. 75-111.
Natland, J. H. & Dick, H. J. B. (1996) Melt migration through high level gabbroic cumulates of the East Pacific Rise at Hes Deep: the origin of magma lenses and the deep crustal structure of fast spreading ridges, in: Mével, C., Gillis, K. M., Allan, J. F., & Meyer, P.S. eds., Proc. Ocean Drill. Prog., Sci. Results, vol. 147, Ocean Drilling Program, College Station, TX, pp. 21– 58.
Nicolas, A. (1989) Structures of Ophiolites and Dynamics of Oceanic Lithosphere: Dordrecht, Netherlands, Kluwer Academic Publishers 367p.
Nicolas, A., Mainprice, D., & Boudier, F. (2003). High temperature seawater circulation through the lower crust of ocean-ridges-a model derived from the Oman ophiolites. Journal of Geophysical Research 108(B8), 2372.
Nickel, K. G. & Green, D. H. (1984) The nature of the uppermost mantle beneath Victoria, Australia, as deduced from ultramafic xenoliths. In: J. Kornprobst (Editor), Kimberlites, Ⅱ. The Mantle and Crust-Mantle Relationship. Elsevier, Amsterdam, pp. 161-179.
Nohara, M., Hirose, K., Eissen, J.-P., Urabe, T. & Joshima, M. (1994) North Fiji Basin basalts and their magma sources: Part I, Sr–Nd isotopic and trace element constraints. Marine Geology 116 (1/2): 179–196.
Onuma, K. & Tohara, T. (1983) Effect of chromium on phase relations in the join forsterite-anorthite-diopside in air at 1 Atm. Contributions to Mineralogy and Petrology 84: 174-181.
Pallister, J. S. & Hopson, C. A. (1981) Semail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research 86: 2593-2644.
Peng, G., Lewis, J., Lipin, B., Mcgee, L., Bao, P. & Wang, X. (1995) Inclusions of phlogopite and phlogopite hydrates in chromite from the Hongguleleng ophiolite in Xinjiang, northwest China. American Mineralogist 80: 1307-1316.
Pearce, J. A. (1983) Role of sub-continental lithosphere in magma genesis at active continental margins, in Hawkesworth, C.J., et al., eds., Continental Basalts and Mantle Xenoliths: Nantwich, Cheshire, Shiva Publishing, p. 230–249.
Pearce, J. A. & Cann, J. R. (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19: 290-300.
Pearce, J. A. & Norry, M. J. (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology 69: 33-47.
Pearce, J. A., Lippard, S. J., & Roberts, S. (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In Kokelaar, B. P., and Howells, M. F., eds., Marginal basin geology: Geological Society of London Special Publication 16: 77-94.
Pearce, J. A. (2003) Supra-subduction zone ophiolites: the search for modern analogues. In: Dilek, Y. & Newcomb, S. eds., Ophiolite Concept and the Evolution of Geological Thought. Geological Society of American Special Paper, vol. 373: 269-293..
Pearce, J. A., Stern, R. J., Bloomer, S. H., & Fryer, P. (2005) Geochemical mapping of the Mariana arc-basin system: Implications for he nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems 6(7), Q07006, doi:10.1029/2004GC000895.
Presnall, D.C. & Hoover, J.D. (1987) High pressure phase equilibrium constraints on the origin of mid-ocean ridge basalts. In: Mysen, B.O. eds., Magmatic Processes: Physicochemical Principles, Special Publication-Geochemical Society, 1: 75– 89.
Rampone, E. & Piccardo, G. B. (2000) The ophiolite-oceanic lithosphere analogue: New insights from the Northern Apennines (Italy). In: Dilek, Y., Moores, E M., Elthon, D., and Nicolas, A., eds., Ophiolite and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Boulder, Colorado, Geological Society of America Special Paper 349, 21-34.
Reddy, S. M., Timms, N. E., Trimby, P., Kinny, P. D., Buchan, C., & Blake, K. (2006) Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness. Geology 34: 257-260.
Rehkämper, M. & Hofmann, A.W. (1997) Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters 147: 93–106.
Rogers, N. (2004) Geochemical dtabase, Red Indian Line project, central Newfoundland. Geological Survey of Canada Open File Report 4605.
Ross, K. & Elthon, D. (1997) Cumulus and postcumulus crystallization in the oceanic crust: Major- and trace-element geochemistry of LEG 153 gabbroic rocks. In: Karson, J. A., Cannat, M., Miller, D. J., and Elthon, D. (eds.) Proceeding of the Ocean Drilling Program, Scientific Results, 153: College Station, TX (Ocean Drilling Program), 333-350.
Saunders, A. D., Norry, M. J., & Tarney, J. (1991) Fluid influence on the trace element compositions of subduction zone magmas. Philosophical Transactions of the Royal Society of London. 335: 377–392.
Schiano, P., Clocchiatti, R., Lorand, J. P., Massare, D., Deloule, E., & Chaussidon, M. (1997) Primitive basaltic melts included in podiform chromites from the Oman ophiolite. Earth and Planetary Science Letters 146, 489-497.
Schwartz, J. J., John, B. E., Cheadle, M. J., Miranda, E. A., Grimes, C. B., Wooden, J. L., & Dick, H. J. B., (2005) Dating the growth of oceanic crust at a slow-spreading ridge. Science 310: 654-657.
Shaw, H. F. & Wasserburg, G. J. (1985) Sm-Nd in marine carbonates and phosphates: Implications for Nd isotopes in seawater and crustal ages. Geochimica et Cosmochimica Acta 49: 503-518.
Shervais, J. W. (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59: 101-118.
Shido, F., Miyashiro, A., & Ewing, M. (1971) Crystallization of abyssal tholeiites. Contributions to Mineralogy and Petrology 31: 251-266.
Sinton, J. M. & Detrick, R. S. (1992) Mid-ocean ridge magma chambers. Journal of Geophysical Research 97: 197-216.
Smith, A. D. & Huang, L. Y. (1997) The use of extraction chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermal ionization mass spectrometry. Cheng Kung Journal, Science, Engineering & Medicine Section 32: 1-10.
Smith, A. G. & Rassios, A. (2003) The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites. in Dilek, Y. & Newcomb, S., eds., Ophiolite Concept and Evolution of Geological Thought: Boulder, Colorado, Geological Society of America Special Paper 373, p. 337-350.
Sobel, E. R. & Arnaud, N. (1999) A possible middle Paleozoic suture in the Altyn Tagh, northwest China. Tectonics 18: 64–74.
Song, S. G., Yang, J. S., Xu, Z. Q., Liou, J. G., & Shi, R. D. (2003) Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the north Qaidam, northern Tibet, NW China: Journal of metamorphic Geology 21: 631-644.
Song, S. G., Zhang, L F., Niu, Y. L., Song, B., Zhang, G. B, & Wang, Q. G. (2004) Zircon U-Pb SHRIMP ages of eclogites in the North Qilian Mountains and their tectonic implications. Chinese Science Bulletin 49: 848-852.
Song, S. G., Zhang, L. F., Niu, Y., Su, L., Jian, P., & Liu, D. (2005) Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters 234: 99-118.
Song, S. G., Zhang, L F, Niu, Y. L., Su, L., Song B., & Liu, D. Y. (2006) Evolution from oceanic subduction to continental collision: A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data. Journal of Petrology 47: 435-455.
Stampfli, G. M. & Borel, G. D. (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196: 17–33.
Steinmann, G. (1927) Der ophiolitishen Zonen in der Mediterranean Kettengebirgen: 14th International Geological Congress in Madrid 2: 638-667.
Storey, M., Saunders, A. D., Tarney, J., Gibson, I. L., Norry, M. J., Thirlwall, M. F., Leat, P., Thompson, R. N., & Menzies, M. A. (1989) Contamination of the Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume. Nature 338: 574–576.
Sturm, M. E., Klein, E. M., Krsten, J. L., & Karson, J. A. (2000) Evidence for subduction-related contamination o the mantle beneath the southern Chile Ridge: Implications for ambiguous ophiolite compostions, in Dilek, Y., Moores, E. M., Elthon, D., & Nicolas, A., eds., Ophiolite and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program: Boulder, Colorado, Geological Society of America Special Paper 349, p. 13-20.
Sun, S. S. & McDonough, W. F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J eds. Magmatism in the Ocean Basins. Geological Society, London, Special Publication 42. Blackwell, Oxford, 313-346
Takagi, D., Sato, H., & Nakagawa, M. (2005) Experimental study of a low-alkali tholeiite at 1-5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contributions to Mineralogy and Petrology 149: 527-540.
Tesalina, S. G., Nimis, P., Augé, T., & Zaykov, V. V. (2003) Origin of chromite in mafic-ultramafic-hosted hydrothermal massive sulfides from the Main Uralian Fault, South Urals, Russia. Lithos. 70: 39-59.
Thy, P., Schiffman, P., & Moores, E. M. (1989) Igneous mineral stratigraphy and chemistry of the Cyprus crustal study project drill core in the Plutonic sequences of the Troodos Ophiolite. In: Gibson, I. L., Malpas, J., Robinson, P. T., Xenophontos, C. eds., Cyprus Crustal Study Project: Initial Report. Hole CY-4: 147–185
Thalhammer, O. A. R., Prochaska, W., & Mühlhans, H. W. (1990) Solid inclusions in chrome-spinels and platinum group element concentrations from the Hochgrössen and Kraubath ultramafic massifs (Austria): Their relationships to metamorphism and serpentinization. Contributions to Mineralogy and Petrology 105: 66-80.
Tindle, A. G. & Webb, P. G. (1994) PROBE-AMPH- a spreadsheet program to classify microprobe-derived amphibole analyses. Computer Geosciences. 20: 1201-1228.
Tribuzio, R., Tiepolo, M., & Vannucci, R. (2000) Evolution of gabbroic rocks of the Northern Apennine ophiolites (Italy): Comparison with the lower oceanic crust from modern slow-spreading ridge. In: Dilek, Y., Moores, E M., Elthon, D., and Nicolas, A., (eds.) Ophiolite and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program. Boulder, Colorado, Geological Society of America Special Paper 349, 129-138.
Tung, K. A., Yang, H. Y., Liu, D. Y. Zhang, J. X., Tseng, C. Y. & Wan, Y. S. (2007a) SHRIMP U-Pb geochronology of detrital zircons from the Longshoushan Group and its tectonic significance. Chinese Science Bulletin 52:1414-1425.
Tung, K. A., Yang, H. J., Yang, H. Y., Liu, D. Y., Zhang, J. X., Wan, Y. S., & Tseng, C. Y. (2007b) SHRIMP U-Pb geochronology of the zircons from the Precambrian basement rocks of Qilian Block and its geological signifisances. Chinese Science Bulletin. (In press)
Tseng, C. Y. & Yang H. Y. (2000) Mineralogy, petrology, and geochemical characteristics of the ophiolitic rocks in the vicinity of Baijing Temple, north Qilian mountains, NW China: Journal Geological Society of China 40: 499-526.
Tseng, C. Y., Yang, H. Y., Wan Y S, Liu, D. Y., Wen, D. J., Lin, T. C., & Tung, K. A. (2006) Finding of Neoproterozoic (~775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: Evidence from SHRIMP zircon U-Pb dating. Chinese Science Bulletin 51(8): 963-970.
Tseng, C. Y., Yang, H. J., Yang, H. Y., Liu, D. Y., Tsai, C. L., Wu, H. G., & Zuo, G. C. (2007a) The Dongcaohe ophiolite from the North Qilian Mountains: A fossil oceanic crust of the Paleo-Qilian ocean. Chinese Science Bulletin. (In press)
Tseng, C. Y., Yang, H. J., Yang, H. Y., Liu, D. Y., Wu, C. L., Cheng, C. K., Chen, C. H., & Ker, C. M. (2007b) Continuity of the North Qilian and North Qinling Orogenic Belts, Central Orogenic System of China: New evidence from the Paleozoic adakitic rocks. Terra Nova. (Major revision)
Tseng, C. Y., Yang, H. Y., Wu, H. Q. & Zuo, G. C. (2007c) The silicate mineral inclusions in the chromian spinel from the Dongcaohe ophiolite, north Qilian Mountains, NW China: Record of syntexis of lower oceanic crust. Canadian Mineralogist. (Accepted)
Vera, E. E., Mutter, J. C., Buhl, P., Orcutt, J. A. & Kappus, M. E. (1990) The structure of 0- to 0.2 m.y.-old oceanic crust at 9°N on the East Pacific Rise from expanded spread profiles. Journal of Geophysical Research 95: 15529-15556.
Wan, Y. S., Yang, J. S., Xu, Z. Q., & Zhang, J. X. (2000) Geochemical characteristics of the Maxianshan complex and Xinglongshan group in the eastern segment of the Qilian orogenic belt. Journal Geological Society of China 43(1): 52-68.
Wan, Y. S., Xu, Z. Q., Yang, J. S., & Zhang, J. X. (2003) Ages and compositions of the Precambrian high-grade basement of the Qilian terrane and adjacent areas. Acta Geoloica Sinica- Engl Ed 75(4): 375-384
Wang, C. Y., Zhang, Q., Qian, Q., et al. (2005) Geochemistry of the early Paleozoic Baiyin volcanic rocks (NW China): Implications for the tectonic evolution of the North Qilian orogenic belt. Journal of Geology 113: 83-94.
Watkinson, D. H. & Mainwaring, P. R. (1980) Chromite in Ontario: Geology and chromite zones, Puddy Lake-Chrome Lake area, and chromite chemistry. In E. Pye, Eds., Geoscience Research Grant Program, Summary of Research, 1979-1980, p. 220-234. Ontario Geological Survey.
Williams, I. S. (1998) U-Th-Pb geochronology by ion microprobe. In: Mckibben, M. A.,Shanks III, W. C., Ridley, W. I. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7, 1-35.
Wilson, D. S., Teagle, D. A. H., Alt, J.C., Banerjee, N. R., Umino, S., Miyashita, S., Acton, G. D., Anma, R., Barr, S. R., Belghoul, A., Carlut, J., Christie, D. M., Coggon, R. M., Cooper, K. M., Cordier, C., Crispini, R., Durand, S. R, Einaudi, F., Galli, L., Gao, Y. G., Geldmacher, J., Gilbert, L. A., Hayman, N. W., Herrero-Bervera, E., Hirano, N., Holter, S., Ingle, S., Jiang, S. J., Kalberkamp, J., Kerneklian, M., Koepke, J., Laverne, C., Vasquez, H. L. L., Maclennan, J., Morgan, S., Neo, N., Nichols, H. J., Park, S-H., Reichow, M. K., Sakuyama, T., Sano, T., Sandwell, R., Scheibner, B., Smith-Duque, C. E., Swift, S. A., Tartarotti, P., Tikku, A. A., Tominaga, M., Veloso, E. A., Yamasaki, T., Yamazaki, S., & Ziegler, C. (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020.
Wood, D. A. (1980) The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 11-30.
Wu, C. L., Yang, J. S., Zeng, L. S., Chen, S. Y., Li, H. B., Qi, X. Q., Wooden, J. L., & Mazdab, F. K. (2006) Double subduction of the early Paleozoic North Qilian oceanic plate: Evidence from granites in the central segment of North Qilian, NW China. Geology in China, 33, 1-12. (in Chinese with English abstract)
Wu, H. Q., Feng, Y. M., & Song, S. G. (1993) Metamorphism and deformation of blueschist belts and their tectonic implications, North Qilian Mountains, China. Journal of Metamorphic Geology 11: 523–536.
Xia, L. Q., Xia, Z. H., & Xu, X. Y. (2003) Magmagenesis in the Ordovician backarc basins of the Northern Qilian Mountains, China. Geological Society of America Bulletin 115: 1510-1522
Xu, J.-F. & Castillo, P. R. (2004) Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. In: Flower, M. eds., Tectonophysics, Special Issue 393, 9–27.
Xu, J.-F., Castillo, P. R., Li, X.-H., Yu, X.-Y., Zhang, B.-R., & Han, Y.-W. (2002) MORB-type rocks from the Paleo-Tethyan Mian–Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters 198: 323–337
Yang, H. Y., Lu, J., & Wu, H. Q. (1997) Mineralogy and petrology of the ophiolite from the Namu Bridge in the North Qilian Mountains, northwest China. Journal Geological Society of China 40: 499-526.
Yang, H. Y., Wu, Y. M., & Wu, C. (2002) Petrology of an arc-oceanic crust contact zone in the Laohushan backarc basin, eastern section of the North Qilian Mountains, NW China. Acta Geoloica Sinica- Engl Ed 76(1): 1-14.
Yang, H. Y., Tseng, C. Y., Zuo, G. C., Wu, H. Q., Xu, Z. Q., & Yang, J. S. (2003) A lower Paleozoic plate tectonic model for the North Qilian Mountains, NW China. Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract T42B-0287.
Yang, J. S., Xu, Z. Q., Zhang, J. X., Chu, C. Y., Zhang, R. Y., & Liou, J. G. (2001) Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountains, northwest China. Geological Society of America Memoir 194: 151-170.
Yang, J. S., Xu, Z. Q, Zhang, J.X., Song, S.G., Wu, C.L, Shi, R.D., Li, H.B., & Brunel, M., (2002) Early Paleozoic North Qaidam UHP metamorphic belt on the northeastern Tibetan plateau and a paired subduction model. Terra Nova 14: 397-404.
Yang, J. S., Xu, Z. Q., & Dobrzhinetskaya, L. F. (2003) Discovery of metamorphic diamonds in central China: an indication of a > 4000-km-long zone of deep subduction resulting from multiple continental collisions. Terra Nova 15: 370-379.
Yang, J. S., Wu, C. L., Zhang, J. X., Shi, R. D., Meng, F. C., Wooden, J., & Yang, H. Y. (2006) Protolith of eclogites in the north Qaidam and Altun UHP terrane, NW China: Earlier oceanic crust? Journal of Asian Earth Sciences 27: 1–20.
Zhang, H. F., Zhang, B. R., Harris, N., Zhang, L., Chen, Y. L., Chen, N. S., & Zhao, Z. D. (2006) U-Pb zircon SHRIMP ages, geochemical and Sr-Nd-Pb isotopic compositions of intrusive rocks from the Longshan-Tianshui area in the southeast corner of the Qilian orogenic belt, China: Constraints on petrogenesis and tectonic affinity: Journal of Asian Earth Sciences 27: 751-764.
Zhang, J. X., Zhang, Z. M., Xu, Z. Q., Yang, J. S., & Cui, J. W. (2001) Petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China: Lithos 56: 187-206.
Zhang, J. X., Meng, F. C., Wan, Y. S., Yang, J. S., & Tung, K. A. (2003). Early Paleozoic tectono-thermal event of the Jingshuikou Group on the south margin of Qaidam: zircon U–Pb SHRIMP age evidence. Geological Bulletin of China 22, 397–404 (in Chinese with English abstract).
Zhang, J. X., Mattinson, C. G., Meng, F. C., & Wan, Y. S. (2005a) An Early Palaeozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China: P-T history and U-Pb geochronology, Journal of Metamorphic Geology 23: 491-510.
Zhang, J. X., Meng, F. C., & Yang, J. S. (2005b) A new HP/LT metamorphic terrane in the northern Altyn Tagh, western China. International Geology Review 47: 371-386.
Zhang, J. X., Yang, J. S., Mattinson, C. G., Xu, Z. Q., Meng, F. C., & Shi, R. D., (2005c) Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints: Lithos 84: 51-76.
Zhang, J. X. & Meng, F. C., (2006). Lawsonite-bearing eclogites in the north Qilian and north Altyn Tagh: evidence for cold subduction of oceanic crust. Journal of Petrology 51: 1238-1244.
Zhang, J. X., Meng, F. C., & Wan, Y. S. (2007) A cold early Paleozoic subduction zone in the North Qilian Mountains, NW China: petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology, doi:10.1111/j.1525-1314.2006.00689.x.
Zhang, Q., Chen, Y., & Zhou, D. J. (1998) Geochemical characteristics and genesis of Dachadaban ophiolite in North Qilian area. Science in China (D) 41: 277-281.
Zhang, S. –Q., MAHONEY, J. J., Mo, X.-X., Ghazi, A. M., Milani, L., Crawford, A. J., Guo, T. –Y., & Zhao, Z. –D.(2005). Evidence for a widespread Tethyan upper mantle with Indian-Ocean-Type isotopic characteristics. Journal of Petrology 46(4), 829–858.
Zheng, Y. F., Zhao, Z. F., Wu, Y. B., Zhang, S. B., Liu, X. M., & Wu, F. Y. (2006) Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology 231: 135-158.
Zindler, A. & Hart, S. (1986) Chemical geodynamic. Annual Reviews of Earth and Planetary Sciences 14: 493-571.