| 研究生: |
葉凡綺 Yeh, Fan-Chi |
|---|---|
| 論文名稱: |
利用核醣體定位技術探討核醣體蛋白L19在轉譯調控中的功能 Dissecting the functional role of RPL19 in the mRNA translation by using ribosome profiling |
| 指導教授: |
曾大千
Tseng, Ta-Chien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 核醣體蛋白 、核醣體定位技術 、核醣體內部結合位 |
| 外文關鍵詞: | Ribosomal protein, Specialized ribosome, Ribosome profiling, IRES site |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
核醣體蛋白(Ribosomal protein)主要功能為穩定rRNA的結構與促進rRNA行正確的折疊並參與在核醣體生合成中,根據核醣體蛋白組成的不同讓核醣體選擇性地轉譯特定核糖核酸。核醣體蛋白L19(RPL19)為核醣體大次單元中的一員,在前列腺癌與大腸直腸癌的中被當作是一預後指標,RPL19的改變不僅可以影響前列腺癌癌細胞侵略性表現更是影響轉譯作用的精確度。儘管有許多關於RPL19的功能被報導,但是RPL19如何參與在轉譯調節中的機制尚未被研究透徹。本篇研究中主要利用建構在高通量定序之上的核醣體定位技術來探討在RPL19存在、表現量下降的系統中基因的表現改變。我們發現表現量顯著下降的基因其功能主要參與在細胞週期的合成期(Synthesis phase)。同時,也觀察到5' 端帽結合蛋白 eIF4E表現量下降,可能會導致進行5’端帽起始轉譯的數量減少。結合核醣體內部結合位預測軟體的使用,挑選出多個基因深入探討RPL19的調節機制。進一步將這些基因的五端非轉譯區(5’UTR)序列建構出來,後續再以報導基因分析釐清RPL19是否透過結合上核醣體內部結合位區域來調節蛋白質的生合成。
Ribosomal protein L19 has been reported to be a prognostic marker for prostate cancer as well as colorectal cancer. Alteration of RPL19 would decrease the fidelity of translation and abrogate aggressive phenotype of cancer. Nontheless, the underlying mechanism of RPL19 participating in global genome mRNA translation is not clear. In the study, we used ribosome profiling (Ribo-seq) technology to investigate the genome-wide translation change between the normal and RPL19 decrease condition. We find that the significantly down-regulated genes mainly involving in the S phase of cell cycle. Moreover, we also found the down-regulation of eIF4E ,a cap-binding protein, play a key role in switching the translation initiation mechanism. According to RPF result, we proposed that IRES dependent translation is favourable under RPL19 declined. Combined with the IRES prediction database, few S-phase associated genes were selected. Furthermore, the reporter assay of 5’UTR of selected genes were constructed to clarify whether RPL19 interact with IRES element to control protein synthesis.
A. de las Heras-Rubio, L. Perucho, R. Paciucci, J. Vilardell, and M.E. LLeonart. Ribosomal proteins as novel players in tumorigenesis. Cancer and Metastasis Reviews 33, 115-141, 2014.
Argetsinger Steitz, J. Polypeptide Chain Initiation: Nucleotide Sequences of the Three Ribosomal Binding Sites in Bacteriophage R17 RNA. Nature 224, 957-964, 1970.
Armistead, J., and Triggs-Raine, B. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS letters 588, 1491-1500, 2014.
Artero-Castro, A., Perez-Alea, M., Feliciano, A., Leal, J.A., Genestar, M., Castellvi, J., Peg, V., Ramon, Y.C.S., and Lleonart, M.E. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy 11, 1499-1519, 2015.
Barna, M., Pusic, A., Zollo, O., Costa, M., Kondrashov, N., Rego, E., Rao, P.H., and Ruggero, D. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971-975, 2008.
Bee, A., Brewer, D., Beesley, C., Dodson, A., Forootan, S., Dickinson, T., Gerard, P., Lane, B., Yao, S., Cooper, C.S., Djamgoz, M.B., Gosden, C.M., Ke, Y., and Foster, C.S. siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One 6, e22672, 2011.
Bee, A., Ke, Y., Forootan, S., Lin, K., Beesley, C., Forrest, S.E., and Foster, C.S. Ribosomal protein l19 is a prognostic marker for human prostate cancer. Clinical cancer research 12, 2061-2065, 2006.
Ben-Shem, A., Jenner, L., Yusupova, G., and Yusupov, M. Crystal Structure of the Eukaryotic Ribosome. Science 330, 2010.
Bumgarner, R. Overview of DNA microarrays: types, applications, and their future. Current Protocols in Molecular Biology Chapter 22, Unit 22 21, 2013.
Bushell, M., Stoneley, M., Kong, Y.W., Hamilton, T.L., Spriggs, K.A., Dobbyn, H.C., Qin, X., Sarnow, P., and Willis, A.E. Polypyrimidine tract binding protein regulates IRES-mediated gene expression during apoptosis. Molecular Cell 23, 401-412, 2006.
Chen, D., Zhang, Z., Li, M., Wang, W., Li, Y., Rayburn, E.R., Hill, D.L., Wang, H., and Zhang, R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26, 5029-5037, 2007.
Chen, J., Wei, Y., Feng, Q., Ren, L., He, G., Chang, W., Zhu, D., Yi, T., Lin, Q., Tang, W., Xu, J., and Qin, X. Ribosomal protein S15A promotes malignant transformation and predicts poor outcome in colorectal cancer through misregulation of p53 signaling pathway. International Journal of Oncology, 48, 1628-1638, 2016.
Chohan, T.A., Qian, H., Pan, Y., and Chen, J.-Z. Cyclin-dependent kinase-2 as a target for cancer therapy progress in the development of CDK2 inhibitors as anti-cancer agents. current medicinal chemistry 22, 237-263, 2015.
Dave, B., Gonzalez, D.D., Liu, Z.B., Li, X., Wong, H., Granados, S., Ezzedine, N.E., Sieglaff, D.H., Ensor, J.E., Miller, K.D., Radovich, M., KarinaEtrovic, A., Gross, S.S., Elemento, O., Mills, G.B., Gilcrease, M.Z., and Chang, J.C. Role of RPL39 in Metaplastic Breast Cancer. Journal of National Cancer Institute 109, 2017.
De Keersmaecker, K., Atak, Z.K., Li, N., Vicente, C., Patchett, S., Girardi, T., Gianfelici, V., Geerdens, E., Clappier, E., Porcu, M., Lahortiga, I., Luca, R., Yan, J., Hulselmans, G., Vranckx, H., Vandepoel, R., Sweron, B., Jacobs, K., Mentens, N., Wlodarska, I., Cauwelier, B., Cloos, J., Soulier, J., Uyttebroeck, A., Bagni, C., Hassan, B.A., Vandenberghe, P., Johnson, A.W., Aerts, S., and Cools, J. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nature Genetics 45, 186-190, 2013.
Dinman, J.D. Pathways to Specialized Ribosomes: The Brussels Lecture. Journal of molecular biology 428, 2186-2194, 2016.
Doerks, T., Copley, R.R., Schultz, J., Ponting, C.P., and Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Reseaech 12, 47-56, 2002.
Gebauer, F., and Hentze, M.W. Molecular mechanisms of translational control. Nature Review Molecular Cell Biology 5, 827-835, 2004.
Gstaiger, M., Jordan, R., Lim, M., Catzavelos, C., Mestan, J., Slingerland, J., and Krek, W. Skp2 is oncogenic and overexpressed in human cancers. Proceeding of the Naionatl Academy of Science of Unite State America 98, 5043-5048, 2001.
Guimaraes, J.C., and Zavolan, M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biology 17, 236, 2016.
Ingolia, N.T. Ribosome profiling: new views of translation, from single codons to genome scale. Nature reviews genetics 15, 205-213, 2014.
Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218-223, 2009.
Ingolia, N.T., Lareau, L.F., and Weissman, J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789-802, 2011.
Jo, O.D., Martin, J., Bernath, A., Masri, J., Lichtenstein, A., and Gera, J. Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. The Journal of Biological Chemistry 283, 23274-23287, 2008.
King, H.A., Cobbold, L.C., and Willis, A.E. The role of IRES trans-acting factors in regulating translation initiation. Biochemical Society Transactions 38, 1581-1586, 2010.
Kuroda, K., Takenoyama, M., Baba, T., Shigematsu, Y., Shiota, H., Ichiki, Y., Yasuda, M., Uramoto, H., Hanagiri, T., and Yasumoto, K. Identification of ribosomal protein L19 as a novel tumor antigen recognized by autologous cytotoxic T lymphocytes in lung adenocarcinoma. Cancer Science 101, 46-53, 2010.
Li, C., Chen, D., Luo, M., Ge, M., and Zhu, J. Knockdown of ribosomal protein L39 by RNA interference inhibits the growth of human pancreatic cancer cells in vitro and in vivo. Biotechnol Journal 9, 652-663, 2014.
Liu, H., Liang, S., Yang, X., Ji, Z., Zhao, W., Ye, X., and Rui, J. RNAi-mediated RPL34 knockdown suppresses the growth of human gastric cancer cells. Oncology Reports 34, 2267-2272, 2015a.
Liu, Y.-Q., Wang, X.-L., Li, X.-C., Yang, L.-N., Zhang, J., Cheng, Y.-X., Cheng, X., Lu, Y.-Z., Wen, Z.-S., Tao, S.-C., Huang, Z.-L., Liu, J., Gui-Zhen Wang, Gao, Q.-L., and Zhou, G.-B. Skp1 in lung cancer clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 6, 34953-34967, 2015b.
Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E.M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnology 25, 117-124, 2007.
Luft, F. The rise of a ribosomopathy and increased cancer risk. Journal of Molecular Medicine 88, 1-3, 2010.
Luo, S., Zhao, J., Fowdur, M., Wang, K., Jiang, T., and He, M. Highly expressed ribosomal protein L34 indicates poor prognosis in osteosarcoma and its knockdown suppresses osteosarcoma proliferation probably through translational control. Science Reports 6, 37690, 2016.
Malkas, L.H., Herbert, B.S., Abdel-Aziz, W., Dobrolecki, L.E., Liu, Y., Agarwal, B., Hoelz, D., Badve, S., Schnaper, L., Arnold, R.J., Mechref, Y., Novotny, M.V., Loehrer, P., Goulet, R.J., and Hickey, R.J. A cancer-associated PCNA expressed in breast cancer has implications as a potential biomarker. Proceeding of the Naionatl Academy of Science of Unite State America 103, 19472-19477, 2006.
Martinez-Azorin, F., Remacha, M., and Ballesta, J.P. Functional characterization of ribosomal P1/P2 proteins in human cells. Biochemical Journal 413, 527-534, 2008.
McCurdy, S.R., Pacal, M., Ahmad, M., and Bremner, R. A CDK2 activity signature predicts outcome in CDK2-low cancers. Oncogene 36, 2491-2502, 2017.
Mihara, M., Shintani, S., Nakahara, Y., Kiyota, A., Ueyama, Y., Matsumura, T., and Wong, D.T.W. Overexpression of CDK2 is a prognostic indicator of oral cancer progression. Jjapanese journal of cancer research 92, 352-360, 2011.
Muers, M. Gene expression: Transcriptome to proteome and back to genome. Nature reviews genetics 12, 518, 2011.
Nakhoul, H., Ke, J., Zhou, X., Liao, W., Zeng, S.X., and Lu, H. Ribosomopathies: mechanisms of disease. Clinical Medicine Insights Blood Disord 7, 7-16, 2014.
Narla, A., and Ebert, B.L. Ribosomopathies: human disorders of ribosome dysfunction. Blood 115, 3196-3205, 2010.
Park, S.M., Choi, E.Y., Bae, M., Kim, S., Park, J.B., Yoo, H., Choi, J.K., Kim, Y.J., Lee, S.H., and Kim, I.H. Histone variant H3F3A promotes lung cancer cell migration through intronic regulation. Nat Commun 7, 12914, 2016.
Pelletier, J., and Sonenberg, N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320-325, 1988.
Peltz SW, H.A., Cui Y, Yasenchak J, Puljanowski L, Dinman JD. <Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus..pdf>. Molecular and cellular biology, 1999.
Rao, S., Lee, S.-Y., Gutierrez, A., Perrigoue, J., Thapa, R.J., Tu, Z., Jeffers, J.R., Rhodes, M., Anderson, S., Oravecz, T., Hunger, S.P., Timakhov, R.A., Zhang, R., Balachandran, S., Zambetti, G.P., Testa, J.R., Look, A.T., and Wiest, D.L. Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. Blood 120, 3764-3773, 2012.
Reiter, A.K., Anthony, T.G., Anthony, J.C., Jefferson, L.S., and Kimball, S.R. The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. The International Journal of Biochemistry & Cell Biology 36, 2169-2179, 2004.
Rhodin, M.H., Rakauskaite, R., and Dinman, J.D. The central core region of yeast ribosomal protein L11 is important for subunit joining and translational fidelity. Molecular Genet Genomics 285, 505-516, 2011.
Sarnow, G.J.a.P. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4, 1500-1513, 1998.
Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. Global quantification of mammalian gene expression control. Nature 473, 337-342, 2011.
Shi, Z., Fujii, K., Kovary, K.M., Genuth, N.R., Rost, H.L., Teruel, M.N., and Barna, M. Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. Molecular Cell 67, 71-83 e77, 2017.
Simsek, D., Tiu, G.C., Flynn, R.A., Byeon, G.W., Leppek, K., Xu, A.F., Chang, H.Y., and Barna, M. The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell 169, 1051-1065 e1018, 2017.
Spriggs, K.A., Stoneley, M., Bushell, M., and Willis, A.E. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biology of the Cell 100, 27-38, 2008.
VanNice, J., Gregory, S.T., Kamath, D., and O'Connor, M. Alterations in ribosomal protein L19 that decrease the fidelity of translation. Biochimie 128-129, 122-126, 2016.
Wang, S.C. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci 35, 178-186, 2014.
Wang, X., Wang, D., Yuan, N., Liu, F., Wang, F., Wang, B., and Zhou, D. The prognostic value of PCNA expression in patients with osteosarcoma: A meta-analysis of 16 studies. Medicine (Baltimore) 96, e8254, 2017.
Wang, Z., Fukushima, H., Inuzuka, H., Wan, L., Liu, P., Gao, D., Sarkar, F.H., and Wei, W. Skp2 is a promising therapeutic target in breast cancer. Front Oncol 1, 2012.
Wang, Z., Gerstein, M., and Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics 10, 57-63, 2009.
Xue, S., and Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature Reviews: Molecular Cell Biology 13, 355-369, 2012.
Yang, H.D., Kim, P.-J., Eun, J.W., Shen, Q., Seok, H., Kim, Shin, W.C., Ahn, Y.M., Park, W.S., Lee, J.Y., and Nam, S.W. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget 7, 11412-11423, 2016a.
Yang, S., Cui, J., Yang, Y., Liu, Z., Yan, H., Tang, C., Wang, H., Qin, H., Li, X., Li, J., Wang, W., Huang, Y., and Gao, H. Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 576, 421-428, 2016b.
Yang SH, H.C., Lee CL, Liu CC, Chien CC, Chen SH. Fecal RNA Detection of Cytokeratin 19 and Ribosomal Protein L19 for Colorectal Cancer. Hepatogastroenterology 57, 710-715, 2010.
Yelick, P.C., and Trainor, P.A. Ribosomopathies: Global process, tissue specific defects. Rare diseases 3, e1025185, 2015.
Yin, X., Yu, J., Zhou, Y., Wang, C., Jiao, Z., Qian, Z., Sun, H., and Chen, B. Identification of CDK2 as a novel target in treatment of prostate cancer. Future oncology, 2018.
Yong, W.H., Shabihkhani, M., Telesca, D., Yang, S., Tso, J.L., Menjivar, J.C., Wei, B., Lucey, G.M., Mareninov, S., Chen, Z., Liau, L.M., Lai, A., Nelson, S.F., Cloughesy, T.F., and Tso, C.L. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One 10, e0141334, 2015.
Yu, C., Guo, J., Liu, Y., Jia, J., Jia, R., and Fan, M. Oral squamous cancer cell exploits hnRNP A1 to regulate cell cycle and proliferation. Journal of Cell Physiology 230, 2252-2261, 2015.
Zhou, X., Hao, Q., Liao, J.M., Liao, P., and Lu, H. Ribosomal protein S14 negatively regulates c-Myc activity. The Journal of Biological Chemistry 288, 21793-21801, 2013.
Zhou, X., Liao, W.J., Liao, J.M., Liao, P., and Lu, H. Ribosomal proteins: functions beyond the ribosome. Journal of Molecular Cell Biology 7, 92-104, 2015.
HumanIREZone: Human Internal Ribosome Entry Zone database http://cosbi2.ee.ncku.edu.tw/transbrowser/home.