| 研究生: |
劉原亨 Liu, Yuan-Heng |
|---|---|
| 論文名稱: |
殼管式甲醇重組器之模式建立與控制應用 The modelling of the shell-and-tube methanol reformer and its control applications |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 產氫 、甲醇蒸氣重組 、殼管式重組器 |
| 外文關鍵詞: | Hydrogen production, Methanol-Steam reforming, Shell-and-tube reformer |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來各國過量使用化石燃料來發展文明而加劇溫室效應,造成了全球暖化的氣候問題,為了減少對於化石燃料的用量,而開始致力於新能源或替代能源的開發。本論文是使用gPROMS與Aspen Plus軟體來模擬以甲醇為進料的產氫製程,並以數學方程式建立殼管式甲醇重組器之模型。在一般產氫製程中會使用到的反應器如甲醇蒸氣重組器、水煤氣反應器、優先氧化反應器與燃燒器等,而我們將以殼管式設計把吸熱反應的甲醇重組器與放熱反應的優先氧化反應器作結合,來減少反應器體積並縮小製程規模。
為了對系統有更進一步的了解,我們在穩態分析結果中獲得最佳之進料比例,並於動態模擬中使用比例-積分控制器來進行干擾消除與設定點追蹤的測試,而選擇以甲醇為操作變數時,能夠在動態下成功的控制出口之溫度。最後我們使用串級控制系統來進一步減少氧氣干擾造成的誤差並增進控制之效果。
In this research, the methanol-fueled hydrogen production process is simulated by the software, gPROMS and Aspen Plus. Then using the Mathematical formulas to build the model of the shell-and-tube methanol reformer. In general, the hydrogen production process consist of the methanol-steam reformer, the WGS (water-gas-shift) reactor, the PROX (preferential oxidation) reactor and the burner. However, with the shell-and-tube design, we combine the endothermic methanol-reformer with the exothermic PROX reactor for exchanging heat. The PROX reactor for heat supply is arranged as the shell side. Moreover this design can effectively decrease the reactor volume and reduce the process scale. In order to understand more about the system, we obtain the optimal operating conditions in steady state process and use the PI (proportional-integral) controller to control disturbance rejection and setpoint tracking test in dynamic process. It is effective to control the output temperature in dynamic simulation while we taking methanol as manipulated variable. Finally we use the cascade control system to reduce the error and enhance the control effect.
[1] U.P.M. Ashik , W.M.A.W. Daud, H.F. Abbas , “Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review”, Renewable and Sustainable Energy Reviews 44 (2015)221–256
[2] J. Alazemi, J. Andrews , “Automotive hydrogen fuelling stations: An international review”, Renewable and Sustainable Energy Reviews 48 (2015)483–499
[3] J.J. Hwang, L.K. Lai, W. Wu, W.R. Chang, “Dynamic modeling of a photovoltaic hydrogen fuel cell”, Journal of Hydrogen Energy 34 (2009) 9531-9542.
[4] 黃鎮江,燃料電池,全華科技圖書,2004
[5] W. Wu, C.C. Pai, “Control of a heat-integrated proton exchange membrane fuel cell system with methanol reforming”, Journal of Power Source 194(2009) 920-930.
[6] S. Wang, S. Wang, “Energy analysis and optimization of methanol generating hydrogen system for PEMFC”, Journal of Hydrogen Energy, 31(2006) 1747-1755.
[7] M. Li, K. Duraiswamy, M. Knobbe, “ Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: Process design and reactor dynamics”, Chemical Engineering Science, 67(2012) 26-33
[8] V. K. Vadlamudi,S. Palanki, “ Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications”, Journal of Hydrogen Energy, 36(2011) 3364-3370.
[9] Y. Choi, H.G. Stenger, “Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications”, Journal of Power Sources 142 (2005) 81–91
[10] A. Luengnaruemitchai , S. Chawla ,R. Wanchanthuek, “The catalytic performance of Au/La-CeOx catalyst for PROX reaction in H2 rich stream”, Journal of Hydrogen Energy 39 (2014)16953 -16963
[11] N.O. Richards, P.A. Erickson, “An investigation of a stratified catalyst bed for small-scale hydrogen production from methanol autothermal reforming”, Journal of Hydrogen Energy 39 (2014) 18077-18083.
[12] 王一帆,“氨分解製備燃料電池用氫過程模擬與能效分析”,上海華東理工大學碩士論文,2015
[13] R. Chein, Y.C. Chen , J.N. Chung, “Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production”, Applied Energy 102 (2013) 1022-1034.
[14] Y.T. Hong, P.A. Erickson,C.Y. Hyung, H.L. Chang, “Comparison of steam and autothermal reforming of methanol using a packed-bed low-cost copper catalyst”, Journal of Hydrogen Energy, 34(2009) 7656-7665.
[15] L.N. Degliuomini, S. Biset, P. Luppi, M.S. Basualdo, “A rigorous computational model for hydrogen production from bio-ethanol to feed a fuel cell stack”, Journal of Hydrogen Energy 37(2012) 3108-3129.
[16] T.Amran,T. Abdullah, Hydrogen Production From Catalytic Ethanol Reforming In Supercritical Water., University of Waterloo Library (2009)
[17] Y. Choi, H.G. Stenger, “Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen”, Journal of Power Sources, 124(2003):432-439.
[18] R. L. Keiski, T.Salmi, P. Niemisto, J. Ainassaari, V.J. Pohjola, “Stationary and Transient Kinetics of the High-Temperature Water-Gas Shift Reaction”, Applied Catalysis A, 137(1996) 349-370.
[19] C.C. Chuang, Y.H. Chen., J.D. Ward, C.C. Yu, Y.C. Liu., C.H. Lee, “Optimal design of an experimental methanol fuel reformer ” , Journal of Hydrogen Energy, 33(2008) 7062-7073.
[20] M.A. Haidekker, “Introduction to Linear Feedback Controls ” ,Linear Feedback Controls, 2013, P1-13
[21] 王正易,“優化、動態與可行性操作獨立混合式發電系統”
國立成功大學化學工程所碩士論文,2013。
[22] 鄭傑文,“以甲醇為燃料的質子交換膜燃料電池之設計與控制”
國立成功大學化學工程所碩士論文,2014。
[23] Ergun S. Mass-Transfer Rate in Packed Columns-Its Analogy to Pressure Loss[J]. Chemical Engineering Progress., 48(1952) (5): 227-236
[24] C.H. Li, B.A. Finlayson, “Heat transfer in packed beds—a reevaluation ” ,Chemical Engineering Science, 32(1977) (9): 1055-1066
校內:2020-08-12公開