簡易檢索 / 詳目顯示

研究生: 何慧明
He, Hui-Ming
論文名稱: P型氫端鑽石及其應用於金氧半場效應電晶體之研究
Hydrogen-terminated P-type Diamond for Metal Oxide Semiconductor Field Effect Transistors
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 氫端鑽石場效應電晶體二維電洞氣
外文關鍵詞: H-terminated diamond, ALD, microwave plasma enhanced chemical vapor deposition (MPCVD)
相關次數: 點閱:102下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑽石被公認為是用來製作高功率、高頻的電子元件最好的半導體,它相較於其他半導體材料擁有許多優良的特性,如:高崩潰電場(>10 MV/cm)、高載子遷移率(電子:4500 cm2V-1s-1;電洞:3800 cm2V-1s-1)、高飽和速度(電子:1.5×107 cm/s;電洞:1.05×107 cm/s),除此之外,鑽石有著極佳的熱傳導特性(22W cm-1∙K-1)使得以鑽石為基板所製作而成的功率電晶體因此特性使其本身為最佳的散熱器。
    鑽石可透過氣體的處理或是沉積過程中的摻雜得到P型半導體或N型半導體的結果,氫端鑽石為常見的應用之一,透過氫電漿對鑽石表面的處理,使在表面產生二維電洞氣體層(two-dimension hole gas, 2DHG),對電晶體而言,此電洞層提供一獨特的P型傳導層。
    本研究以氫端單晶鑽石結合品質優良的氧化鋁絕緣層,再搭配接觸特性優良的金屬電極製作出氫端鑽石金氧半場效應電晶體,以二維電洞氣體層為導電通道實現出電晶體之特性,其量測結果顯現出此電晶體有著高電流密度、良好的閘極絕緣性能及高的開關電流比。

    In this paper, I deposited high quality H-terminated diamond on high pressure high temperature (HPHT) diamond by microwave plasma enhanced chemical vapor deposition (MPCVD). I demonstrated the property of diamond film is good enough can be used to fabricate metal oxide semiconductor field effect transistor (MOSFET) by OM, Raman spectroscopy, SEM, AFM, Hall measurement and contact analyzer. In order to know specific contact resistance, I did transmission line measurement (TLM). Besides, TEM results show thin ALD-AlxOx layer was deposited on H-terminated diamond.
    The experimental results show that the hole concentration is 3.3×1012 cm-2, the specific contact resistance is 1.05×10-4 Ω∙cm2, the thickness of AlxOx is 50 nm and the trend of IDS-VDS characteristics is same as that of conventional P-type MOSFETs.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 鑽石的化性結構 3 1.3 鑽石薄膜的應用 4 第二章 文獻回顧 6 2.1 化學氣相沉積的原理 6 2.2 製程參數對鑽石成長的影響 7 2.2.1 製程氣體的流量與濃度 7 2.2.2 溫度 11 2.2.3 製程壓力 11 2.3 原子層沉積原理 13 2.4 Transmission Line Measurment(TLM) 14 2.5 氫端鑽石與元件 15 第三章 實驗藥品與儀器設備 20 3.1 實驗藥品 20 3.2 實驗製程設備 24 3.2.1 微波電漿輔助化學氣相沉積系統(Microwave Plasma Enhanced Chemical Vapor Deposition, MPECVD) 24 3.2.2 分光光譜儀(Optical Emission Spectroscopy, OES) 26 3.2.3 熱阻式蒸鍍系統(Thermal Evaporator) 27 3.2.4 氧電漿乾式蝕刻系統(Oxygen Plasma Dry Etching System) 29 3.2.5 原子層沉積系統(Atomic Layer Deposition System, ALD) 29 3.2.6 黃光微影製程設備 30 3.3 實驗量測儀器 31 3.3.1 光學顯微鏡(Optical Microscope, OM) 31 3.3.2 拉曼光譜儀(Raman Spectroscopy) 32 3.3.3 原子力顯微鏡(Atomic Force Microscope, AFM) 34 3.3.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 36 3.3.5 高解析穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 37 3.3.6 霍爾量測系統(Hall Measurement System) 38 第四章 實驗方法及結果 39 4.1 實驗流程規劃 39 4.2 實驗方法 41 4.2.1 基板的前置處理 41 4.2.2 未摻雜鑽石的成長與氫化 42 4.2.2.1 未摻雜鑽石的成長 42 4.2.2.2 鑽石的氫化 44 4.2.3 電晶體的製作 45 4.2.3.1 金的蒸鍍機鍍膜 45 4.2.3.2 第一次微影製程 46 4.2.3.3 第一次電極製作 47 4.2.3.4 第二次微影製程 48 4.2.3.5 定義氫端通道 49 4.2.3.6 氧化鋁的沉積 50 4.2.3.7 第三次微影製程 52 4.2.3.8 定義氧化層區域 54 4.2.3.9 第四次微影製程 54 4.2.3.10 鋁的蒸鍍機鍍膜 55 4.2.3.11 第二次電極製作 56 4.3 結果及討論 56 4.3.1 單晶鑽的氫化及分析 56 4.3.1.1 鑽石薄膜的成長與氫化 56 4.3.1.2 氫端鑽石的OM、Raman及AFM結果 58 4.3.1.3 鑽石的疏水性與親水性探討 60 4.3.1.4 氫端鑽石的霍爾量測結果 61 4.3.1.5 鑽石與金屬附著力探討 62 4.3.2 鑽石與金的接觸特性 64 4.3.3 氧化鋁的分析 65 4.3.3.1 氧化鋁沉積速率及成分分析 65 4.3.3.2 氧化鋁的介電常數與絕緣能力 67 4.3.4 氫端鑽石金氧半場效應電晶體之元件特性分析 67 4.3.4.1 IDS-VDS輸出特性 67 4.3.4.2 IDS-VGS輸出特性 68 4.3.4.3 開關電流比(on/off ratio) 69 4.3.4.4 閘極漏電流量測 69 第五章 結論與未來展望 71 第六章 參考文獻 72

    1. Aqel, A., et al., Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry. 5(1): p. 1-23,2012.
    2. Angus, J.C., Diamond and diamond-like films. Thin Solid Films. 216(1): p. 126-133,1992.
    3. Lee, S.-T., Z. Lin, and X. Jiang, CVD diamond films: nucleation and growth. Materials Science and Engineering: R: Reports. 25(4): p. 123-154,1999.
    4. Spear, K.E. and J.P. Dismukes, Synthetic diamond: emerging CVD science and technology. Vol. 25. 1994: John Wiley & Sons.
    5. http://electroiq.com/insights-from-leading-edge/2015/08/iftle-249-merger-mania-or-simple-economics-wide-band-gap-semiconductors-and-advanced-cooling/.
    6. Tuinstra, F. and J.L. Koenig, Raman spectrum of graphite. The Journal of Chemical Physics. 53(3): p. 1126-1130,1970.
    7. Moore, J.W. and C.L. Stanitski, Chemistry: The molecular science. 2014: Cengage Learning.
    8. 宋健民, 工業材料. 1995.
    9. Mortet, V., et al., Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures. Applied Physics Letters. 81(9): p. 1720-1722,2002.
    10. Goodson, K.E., K. Kurabayashi, and R.F.W. Pease, Improved heat sinking for laser-diode arrays using microchannels in CVD diamond. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B. 20(1): p. 104-109,1997.
    11. Chou, C.C., J.H. You, and C.L. Wu, Processing and Crystal Microstructure of Porous High Pressure Crystallized Nanodiamond/UHMWPE Biomedical Nanocomposite. Advanced Materials Research. 328-330: p. 857-860,2011.
    12. Gluche, P., et al., Actuator–sensor technology on “electronic grade” diamond films. Microsystem technologies. 5(1): p. 38-43,1998.
    13. Müller, R., et al., Application of CVD-diamond for catheter ablation in the heart. Diamond and Related Materials. 13(4-8): p. 1080-1083,2004.
    14. Miyata, K., et al., Fabrication and characterization of diamond film thermistors. Review of scientific instruments. 65(12): p. 3799-3803,1994.
    15. Gracio, J.J., Q.H. Fan, and J.C. Madaleno, Diamond growth by chemical vapour deposition. Journal of Physics D: Applied Physics. 43(37): p. 374017,2010.
    16. Pedersen, H. and S.D. Elliott, Studying chemical vapor deposition processes with theoretical chemistry. Theoretical Chemistry Accounts. 133(5): p. 1476,2014.
    17. Matsuba, S., Uniform surface texturing for PVD/CVD hardware. 2002, Google Patents.
    18. Spitsyn, B., et al., Purification and functionalization of nanodiamond, in Synthesis, properties and applications of ultrananocrystalline diamond. 2005, Springer. p. 241-252.
    19. Ralchenko, V., et al., Quality of diamond wafers grown by microwave plasma CVD: effects of gas flow rate. Diamond and related materials. 8(2): p. 189-193,1999.
    20. Dennig, P.A., et al., Influence of substrate treatments on diamond thin film nucleation. Thin Solid Films. 212(1-2): p. 63-67,1992.
    21. Li, X., et al., Investigation of the effect of the total pressure and methane concentration on the growth rate and quality of diamond thin films grown by MPCVD. Diamond and Related Materials. 15(11-12): p. 1784-1788,2006.
    22. Gruen, D.M., Nanocrystalline diamond films 1. Annual Review of Materials Science. 29(1): p. 211-259,1999.
    23. Michaelson, S. and A. Hoffman, Hydrogen in nano-diamond films. Diamond and Related Materials. 14(3-7): p. 470-475,2005.
    24. Das, D. and R.N. Singh, A review of nucleation, growth and low temperature synthesis of diamond thin films. International Materials Reviews. 52(1): p. 29-64,2013.
    25. Petherbridge, J.R., et al., Low temperature diamond growth using CO2/CH4 plasmas: Molecular beam mass spectrometry and computer simulation investigations. Journal of Applied Physics. 89(2): p. 1484-1492,2001.
    26. Silva, F., et al., Microwave engineering of plasma-assisted CVD reactors for diamond deposition. J Phys Condens Matter. 21(36): p. 364202,2009.
    27. Elliott, M., et al., Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH 4/CO 2 plasmas. Diamond and Related Materials. 9(3): p. 311-316,2000.
    28. http://www.twword.com/wiki/原子層沉積.
    29. Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of applied physics. 97(12): p. 9,2005.
    30. Chen, Y.G., et al., Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model. Diamond and Related Materials. 13(11-12): p. 2121-2124,2004.
    31. Kato, H., et al., Characterization of specific contact resistance on heavily phosphorus-doped diamond films. Diamond and Related Materials. 18(5-8): p. 782-785,2009.
    32. Liu, J.-l., et al., Ohmic contact properties of p-type surface conductive layer on H-terminated diamond films prepared by DC arc jet CVD. International Journal of Minerals, Metallurgy, and Materials. 20(8): p. 802-807,2013.
    33. Reeves, G. and H. Harrison, Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron device letters. 3(5): p. 111-113,1982.
    34. Stavitski, N., et al. Specific contact resistance measurements of metal-semiconductor junctions. in Microelectronic Test Structures, 2006. ICMTS 2006. IEEE International Conference on. 2006. IEEE.
    35. Abbas, T. and L. Slewa, Transmission line method (TLM) measurement of (metal/ZnS) contact resistance.2015.
    36. Murrmann, H. and D. Widmann, Current crowding on metal contacts to planar devices. IEEE Transactions on Electron Devices. 16(12): p. 1022-1024,1969.
    37. Foord, J.S., et al., Influence of the environment on the surface conductivity of chemical vapor deposition diamond. Diamond and Related Materials. 11(3-6): p. 856-860,2002.
    38. Landstrass, M. and K. Ravi, Hydrogen passivation of electrically active defects in diamond. Applied Physics Letters. 55(14): p. 1391-1393,1989.
    39. Landstrass, M. and K.V. Ravi, Resistivity of chemical vapor deposited diamond films. Applied Physics Letters. 55(10): p. 975-977,1989.
    40. Hayashi, K., et al., Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements. Applied physics letters. 68(3): p. 376-378,1996.
    41. Nebel, C., et al., Hydrogen-induced transport properties of holes in diamond surface layers. Applied physics letters. 79(27): p. 4541-4543,2001.
    42. Kasap, S. and P. Capper, Springer handbook of electronic and photonic materials. 2006: Springer Science & Business Media.
    43. Ristein, J., et al., Diamond surface conductivity experiments and photoelectron spectroscopy. Diamond and related materials. 10(3): p. 416-422,2001.
    44. Cui, J., J. Ristein, and L. Ley, Low-threshold electron emission from diamond. Physical Review B. 60(23): p. 16135,1999.
    45. Su, C. and J.-C. Lin, Thermal desorption of hydrogen from the diamond C (100) surface. Surface science. 406(1): p. 149-166,1998.
    46. Kasu, M., H. Sato, and K. Hirama, Thermal Stabilization of Hole Channel on H-Terminated Diamond Surface by Using Atomic-Layer-Deposited Al$_{2}$O$_{3}$ Overlayer and its Electric Properties. Applied Physics Express. 5(2): p. 025701,2012.
    47. Kawarada, H., et al., C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Applied Physics Letters. 105(1): p. 013510,2014.
    48. Gi, R.S., et al., Possibility of realizing a gas sensor using surface conductive layer on diamond films. Japanese journal of applied physics. 36(4R): p. 2057,1997.
    49. Gi, S., et al., Hall effect measurements of surface conductive layer on undoped diamond films in NO2 and NH3 atmospheres. Japanese journal of applied physics. 38(6R): p. 3492,1999.
    50. Kubovic, M. and M. Kasu, Improvement of Hydrogen-Terminated Diamond Field Effect Transistors in Nitrogen Dioxide Atmosphere. Applied Physics Express. 2: p. 086502,2009.
    51. Kubovic, M., et al., Electronic and surface properties of H-terminated diamond surface affected by NO2 gas. Diamond and Related Materials. 19(7-9): p. 889-893,2010.
    52. Vandevelde, T., et al., Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin solid films. 340(1): p. 159-163,1999.
    53. C-C, L., Controlled Growth of Single-Layer and Double-Layer Graphene
    Sheets on Patterned Silicon Wafers. 2009, National Tsing Hua University(NTHU)
    54. https://zh.wikipedia.org/zh-tw/原子力显微镜.
    55. Czichos, H., T. Saito, and L. Smith, Springer handbook of materials measurement methods. Vol. 32. 2006: Springer Berlin.
    56. van der PAUYV, L., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13: p. 1-9,1958.
    57. G-L, Z., Investigation of GaN semiconductor using Hall measurent.2003.
    58. Kumar, S., et al. Growth of Diamond by MPCVD Process. in Proceedings of the DAE Symp. on Nucl. Phys. 2013.
    59. Beha, K., et al., Diamond nanophotonics. Beilstein J Nanotechnol. 3: p. 895-908,2012.
    60. Liskova, J., et al., Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films. International journal of nanomedicine. 10: p. 869,2015.
    61. Macpherson, J.V., A practical guide to using boron doped diamond in electrochemical research. Physical Chemistry Chemical Physics. 17(5): p. 2935-2949,2015.
    62. Yagi, I., et al., Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Journal of Electroanalytical Chemistry. 473(1): p. 173-178,1999.
    63. Chen, C. and Q. Chen, Recent Development in Diamond Synthesis. International Journal of Modern Physics B. 22(04): p. 309-326,2008.
    64. Rezek, B., H. Watanabe, and C. Nebel, High carrier mobility on hydrogen terminated⟨ 100⟩ diamond surfaces. Applied physics letters. 88(4): p. 042110,2006.
    65. 賴明駿, 高介電係數閘極界層技術簡介. 電子與材料雜誌. 第14期: p. 131-142

    下載圖示 校內:2022-07-20公開
    校外:2022-07-20公開
    QR CODE