簡易檢索 / 詳目顯示

研究生: 林佩蓉
Lin, Pei-Jung
論文名稱: 利用溶膠凝膠法製備二氧化鈦-活性碳複合粉末及光催化效果之研究
Synthesis of TiO2-Activated carbon powders by sol-gel method and study of the photocatalytic activity
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 溶膠凝膠法二氧化鈦活性碳
外文關鍵詞: TiO2/AC, photocatalysis
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦具有能隙大且無自溶性而廣為業界所使用,不論對水和空氣中有毒物質去除污水之純化、環境臭氧、CO2之固定氟氯碳化物之分解等都佔有極大之重要性,而隨著環保意識高漲,越來越多之研究也指向二氧化鈦,但是二氧化鈦卻有著低比表面積及熱穩定不佳之缺點,使得其在發展上大大打了折扣,如何改善其缺點則為現今專家學者研究的重點之ㄧ。
    本研究利用溶膠凝膠法製備二氧化鈦-活性碳之複合粉末,由於活性碳具有高比表面積及多孔性質之優點,藉由異質成核機制,不僅可以降低二氧化鈦晶粒大小並提高其活性,且利用複合粉末也可達到改善二氧化鈦低比表面積及熱穩定性不佳之缺點。
    將所得之複合粉末利用XRD、SEM等儀器推測其核為活性碳,微小之二氧化鈦粒子披覆其上,並且利用TEM等照片驗證確定二氧化鈦-活性碳複合粉末,藉由FTIR確認二氧化鈦與活性碳接合之情形,在光催化測試方面,複合粉末具有超越純二氧化鈦之光催化效果,原因為複合粉末確實可壓抑二氧化鈦粒子之成長並提高周圍污染物濃度,因而提高二氧化鈦光催化之效能。

    TiO2 photocatalysts has attracted a great deal of attention with the increasing number of recent environmental problems in the world, especially for the detoxification of water and air. TiO2 must overcome the faults related to the low surface area of TiO2, it could be solven by modifying TiO2 on activated carbon surface.
    In this study, activated carbon is regarded as substrate, and TiO2 sols was loaded on it, which was prepared by sol-gel method using tetraisopropyl titanate as precursor to mount thin TiO2 film on activated carbon by heterogeneous growth.
    The TiO2-mounted activated carbon powder is characterizes by XRD、SEM for assuming that activated carbon is regarded as substrate and TiO2 is dispersed on it, and prove that have Ti-O-C chemical bonding by TEM、FTIR. The powder was employed as catalysts for photocatalytic test that was conducted on methylene blue,CO2 and bacteria reduction. The composite powder is observed by TEM that the crystallite size of TiO2 is smaller than bare TiO2(15nm and 24nm in 600℃) and this result is also proved by XRD calculation. Furthermore, The composite powder was shown higher photoactivity for the three photocatalytic test under UV irradiation. Compared to bare TiO2 prepared in parallel,it is attributed to the activated carbon large surface area and TiO2 dispersed on it as well as diminish anatase crystallite size.

    摘要 I Abstract II 誌謝 III 總目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1前言 1 1-2研究目的 3 第二章 基礎理論 4 2-1活性碳簡介 4 2-1-1 活性碳結構 4 2-1-2 活性碳之吸附機制 7 2-2二氧化鈦簡介 9 2-2-1 二氧化鈦結構 9 2-2-2 二氧化鈦光催化機制 12 2-2-3 影響光催化效率之因素 13 2-3 溶膠凝膠(sol-gel)法及鍵結模式 17 2-3-1 光觸媒的製備與披覆 17 2-3-2 溶膠凝膠法 20 2-3-3 影響溶膠凝膠法的因素 21 2-3-4 複合粉末鍵結模式 23 2-3-5 二氧化鈦及活性碳之協同作用 24 2-4複合粉末光觸媒之主要應用 25 2-4-1 固-液相光分解亞甲基藍之反應 25 2-4-2 固-氣相光還原CO2之反應 27 2-4-3 抗菌性之研究 29 2-4-3-1 抑菌或殺菌的作用方式 29 2-4-3-2 自由基破壞細菌生長的模式 30 第三章 實驗方式與步驟 32 3-1 實驗藥品 32 3-2 實驗方式與流程 33 3-2-1 實驗方式簡述 33 3-2-2 起始膠體製備 34 3-2-3 熱處理條件 34 3-3 性質分析 36 3-3-1 物性分析 36 3-3-2 粉末光催化性能測驗 38 3-3-2-1 亞甲基藍分解 38 3-3-2-2 抑制細菌 41 3-3-2-3 CO2還原作用 42 第四章 結果與討論 44 4-1 物理性質分析 45 4-1-1 熱行為分析 45 4-1-2 結晶相鑑定及結晶粒徑分析 47 4-1-3 粉末表面鍵結分析 51 4-1-4 粉末型態與微結構觀察 53 4-2 光催化效能測試 61 4-2-1 亞甲基藍分解 61 4-2-2 微生物降解 65 4-2-3 二氧化碳還原作用 67 第五章 結論與建議 71 參考文獻 72

    1.葉國樑、吳瑞賢、許峰明、林勝雄,“以粒狀活性碳及活性碳纖
    維處理氣相有機物之研究比較”,石油季刊,第32 卷,第一期,
    pp43-52,1996。

    2.邱正宏,“吸附於活性碳表面揮發性有機物之熱脫附動力學研
    究”,國立中山大學環境工程研究所碩士論文,1993。

    3.蔣本基,“活性碳物理化學特性對VOCs 吸附之影響”,工業污
    染 防治,第58 期,1996。

    4. 楊英傑,“以球狀活性碳吸附水溶液中甲苯及其脫附方法之研
    究”,國立成功大學化學工程研究所碩士論文,1992。

    5. I. Bedjat, P. V. Kamat, “Capped semiconductor
    colloids. synthesis and photoelectrochemical behavior
    of TiO2 -capped SnO2 nanocrystallites”, J. Phys.Chem.,
    99, pp9182-9188, 2005.

    6. A. Giraudeau, F. –R. F. Fan, and A. J. Bard,
    “Semiconductor electrodes. 30. spectral sensitization
    of the semiconductors n-TiO2 and n-WO3 with metal
    Phthalocyanines”, J. Amer. Ceram. Soe., 16, pp102,1980.

    7. R. W. Fessenden, P. V. Kamat, “Rate constants for
    charge Injection from excited sensitizer into SnO2,
    ZnO, and TiO2 semiconductor nanocrystallites”,
    J.Phys.Chem., 99, pp12902-12906, 1995.

    8. P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri,
    A. Agostiano, and D. Laub, “Photocatalytic synthesis
    of silver nanoparticles stabilized byTiO2 nanorods: A
    semiconductor/metal nanocomposite in homogeneou
    nonpolar solution”, J. Amer. Ceram. Soe., 126,
    pp3868-3879, 2004.

    9. J.Yu, X. Zhao, “Effect of surface treatment on the
    photocatalytic activity and hydrophilic property of the
    sol-gel derived TiO2 thinfilms”,Mater.Res,Bull.36,pp97-
    107,2001.

    10.C. Trapails, A.D. Modestov, O. Lev, “Sol-gel
    processing of titanium-containing thin coatings”, J.
    Mater. Sci. 28,pp1276-1282,1993.

    11.楊子寬,“利用溶膠凝膠法製備TiO2-Al2O3粉末及對TiO2光催化
    效果影響之研究”,國立成功大學資源工程研究所碩士論
    文,2004.

    12.Linsebigier, A. L.; Lu, G. and Yates, J.T.,
    “Photocatalysis on TiO2 surface: principles, mechanism,
    and selected results”, Chemistry Reviews, Vol.95,
    pp735-758, 1995.

    13. M.Gratzel, N. Serpone, and E. Ed. Pelizzetti
    “Colloidal semiconductor-in photocatalysis”, John
    Wiley & Sons. New York,1989.

    14. A. Mill, S. L. Hunte, “An overview of semiconductor
    photocatalysis”, J.Photochem. and Photobio. A, 108,
    pp1-35,1997.

    15.中山千秋, “光觸媒の評價法と標準化”, 工業材料2002年7
    月號,vol.50,No.7,2002。

    16. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W.
    Bahnemann,“Environmental applications of
    semiconductor photocatalysis,” Chem. Rev., 95, pp69-
    96, 1995.

    17. I. Willner, “ Photoswitchable biomaterials- En route
    to optobioelectronic systems”, Acc. Chem. Res., 30,
    pp347-356, 1997.

    18. Y. Xu, W. Zheng, W. Liu, “Enhanced photocatalytic
    activity of supported TiO2:dispersing effect of
    SiO2”, J.Photochem. and Photobio. A., 122, pp57-60,
    1999.

    19. Amy L. Linsebigler, G. Lu, J. T. Yates, and Jr.,
    “Photocatalysis on TiO2 surface:principles,
    mechanisms, and selected results”, Chem. Rev., 95,
    pp735-758, 1995.

    20. K. M. Reddy, S. V. Manorama, A. R. Reddy, “Band gap
    studies on anatase titanium dioxide nanoparticles”,
    Mater. Chem. and Phys., 78, pp239-245, 2002.

    21. K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N.
    Subbanna, G. Madras, “Synthesis and structure of
    nanocrystalline TiO2 with lower band gap showing high
    photocatalytic activity”, Langmuir , 20, pp2900-2907,
    2004.

    22. C. H. Hung, , and B. J. Marinas, , “Role of chlorine
    and oxygen in the photocatalytic degradation of
    trichloroethylene vapor on TiO2 films”,
    Environ.Sci.Technol., 31:2, pp562-568, 1997.

    23. E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, “Growth
    of submicrometer-scale rectangular parallelepiped
    rutile TiO2 films in aqueous TiCl3 solutions under
    hydrothermal conditions”, J. Amer. Ceram. Soe., 126,
    pp7790-7791, 2004.

    24.K. J. Kim, K. D. Benkstein, Jao van de Lagemaat, A.
    J.Frank, “Characteristics of low-temperature annealed
    TiO2 films deposited by precipitation from hydrolyzed
    TiCl4 solutions”, Chem. Mater., 14, pp1042-1047, 2002.

    25.曹茂盛、關長斌、徐甲強編著,“奈米材料導論”,學富文化,
    pp54,2002.

    26. R.S. Sonawane, S.G. Hegde, M.K. Dongare, “Preparation
    of titanium(IV) oxide thin film photocatalyst by sol–
    gel dip coating”, Mater. Chem. and Phys., 77, pp744–
    750, 2002.

    27. N. Kaliwoh, J.Y. Zhang, I. W. Boyd, “Titanium dioxide
    films prepared by photo-induced sol-gel processing
    using 172 nm excimer lamps”, Surface Coatings
    Technolog , 125, pp424-427, 2000.

    28. Y. Xu, W. Zheng, W. Liu, “Enhanced photocatalytic
    activity of supported TiO2:dispersing effect of
    SiO2”, J.Photochem. and Photobio. A., 122, pp57-60,
    1999.

    29. R. Aelion, A. Loebel, F. Eirich, “Hydrolysis of ethyl
    silicate”, J. Am. Chem. Sci., 72, pp5705, 1950.

    30. C. Morterra, “An infrared spectroscopic study of
    anatase properties”, J. Chem. soc. Faraday Trans.I, 84
    (5),pp1617-1637, 1988.

    31. H. Y. Ha, and M. A. Anderson., “Photocatalytic
    degration of formic acidvia metal-supported
    titania”,J. Environ. Engin., 122, pp217-221, 1996.

    32. J. Araña , J.M. Doña-Rodr´ıguez , E. Tello Rendóna,
    “TiO2 activation by using activated carbon as a
    support Part I. Surface characterisation and
    decantability study”,Applied Catalysis B:
    Environmental,44,pp161-172,2003.

    33. H. Yoneyama,, “Titanium Dioxide/Adsorbent Hybrid
    Photocatalysts for Photodestruction of Organic
    Substances of Dilute concentrations”, Catalysis
    Today, 58, pp.133-140,2000.

    34. B. Tryba,A. W. Mooraski, M. Inagaki, “A new route for
    preparation of TiO2-mouted activated carbon”,
    Environmetal.,46,pp203-208,2003.

    35. Y. Li, X. Li, J. Li, J. Yin, “Photocatalytic
    degradation of methyl orange in a sqarged tube reactor
    withTiO2-coated carbon composites”,Catslysis
    Communications.,6,pp650-655,2005.

    36. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui,C.
    Guillard, J.M.Herrmann, “ Photocatalytic degradation
    pathway of methylene blue in water,” Applied
    Catalysis B: Environmental,31,pp145-147,2001.

    37. S. S. Tan, L. Zou, E. Hu , “Photocatalytic reduction o
    f carbon dioxide into gaseous hydrocarbon using TiO2
    pellets”, Catalysis Today,115,pp269-273,2006

    38. 鄭美玲,“氧化壓力對細胞生理之影響:以腐植酸及葡萄六磷酸
    去氫酵素缺乏細胞為模式探討”,國立台灣大學醫學院生化學
    研究所博士論文,2000.

    39. J.Aikens, J.A. Dix,“perhydroxyl Radical(Hoo˙)
    initiated Lipid peroxidation”, J. Biol,Chem,266 ,pp91-
    98,1991.

    40.許樹恩,吳泰伯,“X光繞射原理與材料結構分析”,中國材料
    科學學會,pp422,1996.

    41.G. Colón, M.C. Hidalgo, J.A. Nav´ıo, “A novel
    preparation of high surface area TiO2 nanoparticles
    from alkoxide precursor and using active carbon as
    additive”, Catalysis today,76,pp91-101,2002.

    42.S.X. Liu , X.Y. Chen, X. Chen, “A TiO2/AC composite
    photocatalyst with high activity and easy separation
    prepared by a hydrothermal .
    method”,J.Haza.Mate.,43,pp257–263,2007.

    下載圖示 校內:2010-07-10公開
    校外:2012-07-10公開
    QR CODE