| 研究生: |
林宇哲 Lin, Yu-Jhe |
|---|---|
| 論文名稱: |
亞伯拉罕時域法於具模態干涉之系統模態參數識別 Identification of Modal Parameters of Systems with Modal Interference by Ibrahim Time Domain Method |
| 指導教授: |
江達雲
Chiang, Dar-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 亞伯拉罕時域法 、模態干涉 、模態參數識別 |
| 外文關鍵詞: | Ibrahim Time Domain method, modal interferences, identification of modal parameters |
| 相關次數: | 點閱:99 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在進行系統之模態參數識別的過程中,模態干涉常會造成可識別性的問題,影響系統識別結果的精度。產生模態干涉的主要原因通常有相近頻率、高阻尼比及阻尼非比例性過大等等。本文主要在探討時域之模態參數識別,針對前人所提出的亞伯拉罕時域法進行深入研究。
本文將延遲時間取樣擴充頻道法應用於亞伯拉罕時域法,針對系統響應在含有雜訊的影響下如何提高系統的識別精度進行探討。實際上系統的自由度為無窮多個,由於在進行模態參數識別時,選擇適當的系統階數可有效提升模態參數識別的準確性。吾人提出利用奇異值分解法引入最小二乘法求出系統矩陣,並同時判定出系統階數,從而提升亞伯拉罕時域法的有效性。另外,利用頻響函數圖判定系統階數時,頻響函數圖較易受到模態干涉程度的影響,導致模態遺漏的狀況,本文利用頻響函數中相位角的分布判定待識別的系統模態,從而提升模態識別的有效性。
Modal interferences often cause problems on identifiability and affect the accuracy of system identification during the process of modal parameter identification. Major causes of modal interferences include close frequencies, high damping ratios, non-proportional damping…etc. This thesis will investigate modal-parameter identification in time domain, by proposes a method of using the technique of channel-expansion in Ibrahim time domain method to improve identification accuracy.In general, selecting the order of system before using Ibrahim time domain method is important. This thesis proposes Singular Value Decomposition instead of the Method of Least Squares to solve the matrix of system and at the same time evaluate the order of system to avoid the phenomenon of omitted modes. In addition, this thesis proposes the use of the phase angle diagram of frequency response function in conjunction with the amplitude diagram. So that it is easier to distinguish the modes which are influenced by modal interference.
SUMMARY
Modal interferences often cause problems on identifiability and affect the accuracy of system identification during the process of modal parameter identification. Major causes of modal interferences include close frequencies, high damping ratios, non-proportional damping…etc. This thesis will investigate modal-parameter identification in time domain, by proposes a method of using the technique of channel-expansion in Ibrahim time domain method to improve identification accuracy.
In general, selecting the order of system before using Ibrahim time domain method is important. This thesis proposes Singular Value Decomposition instead of the Method of Least Squares to solve the matrix of system and at the same time evaluate the order of system to avoid the phenomenon of omitted modes. In addition, this thesis proposes the use of the phase angle diagram of frequency response function in conjunction with the amplitude diagram. So that it is easier to distinguish the modes which are influenced by modal interference.
參考文獻
[1] Ewins, D. J.,Modal Testing: Theory and Practice, Research Studies Press, 1984.
[2] Ibrahim, S. R. and Mikulcik, E. C., “The Experimental Determination of Vibration Parameters from Time Responses”,Shock and Vibration Bulletin, Vol. 46, Part 5, Aug.1976, pp.183-198.
[3] Ibrahim,S. R. and Mikulcik, E. C., “A method for the Direct Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47, Part 4, Sept.1977, pp.183-198.
[4] Pappa, R. S. and Ibrahim, S. R., “A parametric Study of Ibrahim Time Domain Modal Analysis”, Shock and Vibration Bulletin, Vol. 51, Part 3, 1981, pp.43-72.
[5] Vold, H. and Rocklin, G. F., “The Numerical Implementation of a Multi-input Modal Estimation Method for Mini-computers”, International Modal Analysis Conference Proceedings,Nov. 1982.
[6] Juang, J. N. and Pappa, R. S., “An Eigensystem Realization Algorithm for Modal Parameter Identification and Modal Reduction”,Journal of Guidance and Control Dynamics,AIAA,Vol.8,No. 5,1985,pp.620-627.
[7] Juang, J. N. and Pappa, R. S., “Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm”,Journal of Guidance and Control Dynamics,AIAA,Vol.9,No. 3,1986,pp.294-303.
[8] Ho, B. L. and Kalman, R. E., “Effective Construction of Linear State-Variable Models from Input/Output Data”, Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, 1965, pp.449-459.
[9] Ibrahim, S. R. “Modal Confidence Factor in Vibration Testing”,journal of Spacecraft and Rockets,Vol.21,No.5,Oct.1978,pp.313-316.
[10] Srikantha Phani, A., “On the Necessary and Sufficient Conditions for the Existence of Classical Normal Modes in Damped Linear Dynamic Systems”, Journal of Sound and Vibration, Volume 264, 2003,Pages 741-745
[11] Ibrahim R.A., Pettit C.L., Uncertainties and dynamic problems of bolted joints and other fasteners. Journal of Sound and Vibration, 2005, pp.279:857-936
[12] Ibrahim, S. R. and Mikulcik, E. C., “The experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, Aug. 1976, pp. 183-198.
[13] Ibrahim, S. R. and Mikulcik, E. C., “A Method for the Direst Identification of Vibration Parameters from Free Response”, Shock and Vibration Bulletin, Vol. 47,Pt. 4,Sept.1977, pp. 183-198.
[14] Chiang D.Y. and Lin C.S., “Identification of Modal parameters from nonstationary ambient vibration Data Using the Channel-expansion technique”, Journal of Mechanical Science and Technology, No. 25, 2011, pp.1307-1315.
[15] Frank K. and Richard P., “Generalized Reduced Rank tests using the singular value decomposition”, Journal of Econometrics, Vol. 133, Jul.2006, pp. 97-126.
[16] Virginia C. Klema and Alan J. Laub, “The Singular Value Decomposition: Its Computation and Some Applications”, IEEE Transactions on Automatic Control, Vol. 25, No. 2, Apr.1980, pp. 164-176.
[17] Ibrahim, S. R., “Modal Confidence Factor in Vibration Testing”, Journal of Spacecraft and Rockets, Vol. 15,No. 5,Sept.1978,pp. 313-316.
[18] Hu, S. L., Yang, W. L., Liu, F.S. and Li, H. J., “Fundamental comparison of time-domain experimental modal analysis methods based on high- and first-order matrix models ”, Journal of sound and Vibration, Vol. 333, No. 25, pp. 6869-6884, 2014.
[19] K. A. Petsounis and S. D. Fassois, “Parametric Time-Domain Methods For The Identification Of Vibrating Structures-A Critical Comparison And Assessment ”, Mechanical Systems and Signal Processing, Vol. 15, No. 6, pp.1031-1060, 2001.
[20] Lin, C.S., “Ambient modal identification using non-stationary correlation technique”, Archive of Applied Mechanics, Vol.86, No. 8, pp.1449-1464, 2016.
[21] Bathe, K. J. Finite Element Procedures in engineering Analysis, Prentice-Hall,inc., 1982. Chap.9