| 研究生: |
郭任傑 Kuo, Jen-Chieh |
|---|---|
| 論文名稱: |
追星儀之全天動態星場模擬 All-Sky Dynamic Starfield Simulation for the Development of Star Trackers |
| 指導教授: |
陳炳志
Chen, Bing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 追星儀 、動態星場模擬器 |
| 外文關鍵詞: | star tracker, dynamic starfield simulation |
| 相關次數: | 點閱:52 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
追星儀是一種高精度的感測器,透過辨識視野中恆星位置來確定指向,進一步確定衛星姿態。隨著科技進步,計算性能提升,現代追星儀能夠在內部進行快速星場識別和姿態計算,達到更高的精確度。本研究主要為了因應追星儀的發展,開發全天動態星場模擬系統用以驗證追星儀演算法的效能。目前已有的星空模擬軟體雖然能夠模擬靜態星空影像,但無法滿足追星儀演算法驗證的需求,尤其是模擬動態星場。因此,本研究提出了能整合必要天體數據並考慮衛星空間旋轉的星場模擬系統,這對於追星儀演算法的開發和驗證有其必要性。本研究工作引入了不同座標系統的轉換,包括地球座標系統和天球座標系統,建立星圖模擬的框架。使用歐拉角和四元數描述衛星姿態和變化。除此之外,本研究工作也導入了光學系統的模擬,包含光學系統中鏡頭、感測器規格對視野的影響和如何模擬感測器的電子系統,並且將天體的位置和亮度投影到影像平面上以數值呈現。在天體的模擬上,除了恆星外,也從軌道參數計算了主要行星與太陽、月亮等太陽系天體的亮度和座標。模擬的靜態與動態星場影像與現有的模擬軟體進行了對比,驗證了本文系統在原本星像軟體的可靠性之上,還加入驗證追星儀演算法的功能。本研究開發的星場模擬系統能夠模擬衛星在不同姿態下拍攝到的星空影像,對於驗證追星儀的演算法性能具有重要價值。此系統彌補了現有星空模擬軟體在衛星動態模擬方面的不足。
In this study, we try to develop an all-sky dynamic starfield simulation system to verify the performance of the star tracker algorithms in response to the development of the star tracker.
This paper concludes the methods and describes the specific process of simulating the images captured by a star tracker, from inputting parameters of optics, sensors, and observing modes to the final image generation.
The results of static starfield simulations are shown and compared with the existing simulation software Stellarium to verify the accuracy of the system in this paper. The results of dynamic starfield simulations are also included, which are based on the simulation of the rotation of the satellite in its orbit.
"軌道根數". (2023, 2023,05,12). In Wikipedia. 维基百科,自由的百科全書. Retrieved 0512 from https://zh.wikipedia.org/w/index.php?title=%E8%BB%8C%E9%81%93%E6%A0%B9%E6%95%B8&oldid=77205292
Agarwal, M., Gunasekaran, R., Coane, P., & Varahramyan, K. (2004). Polymer-based variable focal length microlens system. Journal of Micromechanics and Microengineering, 14(12), 1665.
Allam, J., Capasso, F., Alavi, K., & Cho, A. (1987). Near-single carrier-type multiplication in a multiple graded-well structure for a solid-state photomultiplier. IEEE electron device letters, 8(1), 4-6.
Bloise, N., Capello, E., Dentis, M., & Punta, E. (2017). Obstacle Avoidance with Potential Field Applied to a Rendezvous Maneuver. Applied Sciences-Basel, 7(10), 16, Article 1042. https://doi.org/10.3390/app7101042
Bretagnon, P., & Brumberg, V. A. (2003). On transformation between international celestial and terrestrial reference systems. Astronomy & Astrophysics, 408(1), 387-400. https://doi.org/10.1051/0004-6361:20030911
Dam, E. B., Koch, M., & Lillholm, M. (1998). Quaternions, interpolation and animation (Vol. 2). Citeseer.
Finney, G. A., Fox, S., Nemati, B., & Reardon, P. J. (2023). Extremely Accurate Star Tracker for Celestial Navigation. Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference,
Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., & Kuchynka, P. (2014). The planetary and lunar ephemerides DE430 and DE431. Interplanetary network progress report, 196(1), 42-196.
Fu, Z., Yang, X., Wu, M., Yan, A., Du, J., Gao, S., & Tang, X. (2022). Analysis and correction of the rolling shutter effect for a star tracker based on particle swarm optimization. Remote Sensing, 14(22), 5772.
Günther, H., Lim, P., Crawford, S., Conseil, S., Shupe, D., Craig, M., Dencheva, N., Ginsburg, A., VanderPlas, J., & Bradley, L. (2018). The astropy project: Building an inclusive, open-science project and status of the v2. 0 core package. arXiv preprint arXiv:1801.02634.
Hamilton, W. R. (1844). LXXVIII. On quaternions; or on a new system of imaginaries in Algebra: To the editors of the Philosophical Magazine and Journal. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25(169), 489-495.
Hoots, F. R. (1980). Models for propagation of NORAD element sets. Peterson AFB, CO, Spacetrack Report.
IAU. (2000). XXIVth General Asselllbly. https://www.iau.org/static/resolutions/IAU2000_French.pdf
Krasjet. (2021). 四元数与三维旋转. https://github.com/Krasjet/quaternion
Liebe, C. C. (1995). Star trackers for attitude determination. IEEE Aerospace and Electronic Systems Magazine, 10(6), 10-16.
Liebe, C. C. (2002). Accuracy performance of star trackers-a tutorial. IEEE Transactions on aerospace and electronic systems, 38(2), 587-599.
Mallama, A. (2007). The magnitude and albedo of Mars. Icarus, 192(2), 404-416.
Mallama, A. (2012). Improved luminosity model and albedo for Saturn. Icarus, 218(1), 56-59.
Mallama, A., & Hilton, J. L. (2018). Computing apparent planetary magnitudes for The Astronomical Almanac. Astronomy and computing, 25, 10-24.
Mallama, A., & Schmude Jr, R. W. (2012). Cloud band variations and the integrated luminosity of Jupiter. Icarus, 220(1), 211-215.
Mallama, A., Wang, D., & Howard, R. A. (2002). Photometry of Mercury from SOHO/LASCO and Earth: The phase function from 2 to 170. Icarus, 155(2), 253-264.
Mallama, A., Wang, D., & Howard, R. A. (2006). Venus phase function and forward scattering from H2SO4. Icarus, 182(1), 10-22.
Muller, G. (1893). Number 30. Achten Bandes Viertes Stuck. Helligkeitsbestimmungen der grossen planeten und einiger asteroiden. Publikationen des Astrophysikalischen Observatoriums zu Potsdam, Vol. 8, p. 193-389, 8, 193-389.
Patris, J. (2010). Preparing astronomical observations and observing with OHP facilities. EPJ Web of Conferences, 9, 215-226. https://doi.org/10.1051/epjconf/201009017
Pogson, N. (1856). Magnitudes of Thirty-six of the Minor Planets for the first day of each month of the year 1857. Monthly Notices of the Royal Astronomical Society, Vol. 17, p. 12-15, 17, 12-15.
Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., & Kerzendorf, W. E. (2013). Astropy: A community Python package for astronomy. Astronomy & Astrophysics, 558, A33.
Schmude Jr, R. W., Baker, R. E., Fox, J., Krobusek, B. A., & Mallama, A. (2015). Large brightness variations of Uranus at red and near-IR wavelengths. arXiv preprint arXiv:1510.04175.
SSSR., A. i. n., naukʺ, I. a. a. a., & Library, B. H. (1750). Novi commentarii Academiae Scientiarum Imperialis Petropolitanae. typis Academiae scientiarum. https://books.google.com.tw/books?id=Yf3QAAAAMAAJ
Standish, E. M., & Williams, J. G. (1992). Orbital ephemerides of the Sun, Moon, and planets. Explanatory supplement to the astronomical almanac, 279-323.
Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S., & Monier, R. (2000). The SIMBAD astronomical database. Astron. Astrophys. Suppl. Ser., 143(1), 9-22. https://doi.org/10.1051/aas:2000332
Williams, D. R. (2024). Planetary Fact Sheet - Metric. NASA Space Science Data Coordinated Archive. https://nssdc.gsfc.nasa.gov/planetary/factsheet/
Zhang, B., Zerubia, J., & Olivo-Marin, J.-C. (2007). Gaussian approximations of fluorescence microscope point-spread function models. Applied Optics, 46(10), 1819-1829. https://doi.org/10.1364/AO.46.001819
第2回 天体基準座標系 補足. (2017). geospatial data solution center. https://g-spatial.com/knowledge/serialization/rensai/%E3%80%90%E9%80%A3%E8%BC%89%E3%80%91%E7%AC%AC2%E5%9B%9E%E3%80%80%E5%A4%A9%E4%BD%93%E5%9F%BA%E6%BA%96%E5%BA%A7%E6%A8%99%E7%B3%BB%E3%80%80%E8%A3%9C%E8%B6%B3/