| 研究生: |
謝宏鑫 Xie, Hong-Xin |
|---|---|
| 論文名稱: |
結合機器學習演算法與土地利用迴歸推估苯污染時空變異-以高雄林園臨海工業區與台灣本島為例 Land-use Regression Coupled with Machine Learning for Estimating Benzene Concentration Variation: A Case Study of Kaohsiung Industrial Parks and Main Island of Taiwan |
| 指導教授: |
吳治達
Wu, Chih-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 苯 、地理資訊系統 、土地利用迴歸 、機器學習 、時空分布 |
| 外文關鍵詞: | Benzene, Geographical information system, Land-use regression, Machine learning, Spatial-temporal distribution |
| 相關次數: | 點閱:139 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
苯對健康的危害已是眾所皆知,除了短期攝入高濃度的苯會出現暈眩、嘔吐、高度知覺喪失,長期吸入則會誘發血液相關疾病、染色體畸變、白血病及死亡。依照衛生福利部統計處資料顯示,攝入苯最主要誘發的白血病人數逐年上升,因此了解苯濃度的分布對於國人的健康評估具有急迫性及研究必要性。本研究旨在結合地理資訊系統、遙測影像、土地利用迴歸及機械學習等技術,並考量與苯濃度相關之因子所建立之地標資料庫以更細部探討與其之間的關係。在台灣本島方面,基於2003年至2019年,長達17年的月平均空污監測數據;林園臨海則從有監測數據以來,自2015年5月至2019年底,並利用線性的逐步迴歸法(Stepwise Regression)以審慎篩選出有效預測苯濃度的相關因子,再以線性的土地利用迴歸(Land-use Regression, LUR)、非線性機器學習之隨機森林(Random Forest, RF)及極限梯度提升(eXtreme Gradient Boosting, XGBoost)演算法進行模型擬合,以發展符合在地特性之苯污染時空推估模型;同時,為確保模型具有一定程度的穩定性及預測準確性,本研究總共執行九項模型驗證,並在驗證結果中體現模型的可信度。結果顯示,在林園臨海特殊性工業區所建置之模型方面,以Hybrid-LUR-XGBoost的模型解釋能力為最佳,Adjusted R2為0.73,RMSE為0.78 ppbv。台灣本島模型方面,因有些月份測站數量稀少故未能使用以leave-one-out Kriging所建置之Hybrid-LUR模型。其最佳模型表現為LUR-XGBoost,Adjusted R2為0.82,RMSE為0.77 ppbv,並且在後續的模型驗證中體現了穩定性,以及在模型的時間以及空間的外推能力上,都表現出不錯的成果。在推估濃度方面,以工業區、人口稠密區苯濃度較高。
Benzene is one of the VOCs (Volatile Organic Compounds) that might affect human respiratory and hematopoietic system. According to World Health Organization (WHO) in 2003 for claiming the hazard of benzene, dizziness, headache, and high levels unconsciousness might be associated with short-term intake. For the long-term exposures, the risk of contracting aplastic anemia might be increased. Few studies focused on benzene concentration estimation in the last decade, but the hazards of benzene have received attention greatly. This highlights the importance in developing a methodology for identifying the spatial-temporal variations of benzene, and further to assess people’s exposure level to benzene. Among these spatial modelling approaches, land-use regression (LUR) is one of the approaches which is widely applied in spatial modelling for various types of air pollutant. By utilizing a stepwise variable selection procedure, LUR could identify important land-use/land cover predictors and form a multiple linear regression model to predict the spatial variations of air pollution. Recently, the development of machine learning algorithms provides an insight to assess the non-linear relationship between air pollution and spatial predictors, which might be helpful in improving the model prediction accuracy. The aim of this study was to apply LUR coupled with machine learning algorithms for accurately estimating the s spatial-temporal variations of ambient benzene in the main island of Taiwan and industrial parks in Kaohsiung city with a monthly resolution.
Monthly benzene observations from May, 2015 to December, 2019, and January, 2003 to December, 2019 were collected for the Kaohsiung Linyuan-Linhai industrial parks and the main island of Taiwan, respectively. A stepwise variable selection procedure was used to identify the important predictor variable based on the statistical criteria. Several spatial model approach or algorithms including Land-use Regression (LUR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) were then applied to fit the models using these selected predictor variables. Six internal data validations and three external data verifications were employed to confirm the stability and reliability of the developed models. The results showed LUR-XGBoost approach obtained the best prediction performance for the Kaohsiung Linyuan-Linhai industrial parks with adjusted R2 of 0.82 and RMSE of 0.77 ppbv. On the other hand, Hybrid-LUR-XGBoost outperformed the other models for the main island of Taiwan and the obtained adjusted R2 and RMSE was 0.73 and 0.78 ppbv, respectively. Similar findings were observed from the model validations and verifications tests confirmed the robustness of the developed models. Finally, densely populated area and nearby industries were hotspots of benzene pollutant.
孫岩章 (2007) 無毒農業生產技術輔導計畫结果報告。
袁中新、申華臻、姜彧波、楊宗謀、洪崇閔 (2017) 台灣高屏空品區高污染事件期間PM2.5化學指紋特徵及污染來源解析。第十三屆全國氣溶膠會議。
環保署 (2003) 修正現行之空氣品質指標https://www.epa.gov.tw/DisplayFile.aspx?FileID=1334267D0FA792C6&P=ad6437c8-8f46-480d-9f2c-ef2e92ae332b
環保署、國科會 (2011) 仁武、大社、林園石化工業區之揮發性有機物、多環芳香烴化合物、多溴聯苯醚之總量管制策略與最佳可行控制技術。環保署/國科會空污防制科研合作計畫。
Abu-Allaban, M., Lowenthal, D. H., Gertler, A. W., & Labib, M. (2009). Sources of volatile organic compounds in Cairo’s ambient air. Environmental monitoring and assessment, 157(1), 179-189.
Aguilera, I., Sunyer, J., Fernández-Patier, R., Hoek, G., Aguirre-Alfaro, A., Meliefste, K., ... & Brunekreef, B. (2008). Estimation of outdoor NOx, NO2, and BTEX exposure in a cohort of pregnant women using land use regression modeling. Environmental science & technology, 42(3), 815-821.
Alexeeff, S. E., Carroll, R. J., & Coull, B. (2016). Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures. Biostatistics, 17(2), 377-389.
Amini, H., Hosseini, V., Schindler, C., Hassankhany, H., Yunesian, M., Henderson, S. B., & Künzli, N. (2017). Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran study of exposure prediction for environmental health research (Tehran SEPEHR). Environmental pollution, 226, 219-229.
Amini, H., Yunesian, M., Hosseini, V., Schindler, C., Henderson, S. B., & Künzli, N. (2017). A systematic review of land use regression models for volatile organic compounds. Atmospheric environment, 171, 1-16.
Araki, S., Shima, M., & Yamamoto, K. (2018). Spatiotemporal land use random forest model for estimating metropolitan NO2 exposure in Japan. Science of The Total Environment, 634, 1269-1277.
Austin, H., Delzell, E., & Cole, P. (1988). Benzene and leukemia. A review of the literature and a risk assessment. American journal of epidemiology, 127(3), 419-439.
Ayturan, Y. A., Ayturan, Z. C., & Altun, H. O. (2018). Air pollution modelling with deep learning: a review. International Journal of Environmental Pollution and Environmental Modelling, 1(3), 58-62.
Badol, C., Borbon, A., Locoge, N., Léonardis, T., & Galloo, J. C. (2004). An automated monitoring system for VOC ozone precursors in ambient air: development, implementation and data analysis. Analytical and bioanalytical chemistry, 378(7), 1815-1827.
Bayraktar, H., & Turalioglu, F. S. (2005). A Kriging-based approach for locating a sampling site—in the assessment of air quality. Stochastic Environmental Research and Risk Assessment, 19(4), 301-305.
Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., ... & de Hoogh, K. (2013). Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–the ESCAPE project. Atmospheric Environment, 72, 10-23.
Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr, G., Hoffmann, B., ... & Hoek, G. (2014). Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. The lancet, 383(9919), 785-795.
Bellinger, C., Jabbar, M. S. M., Zaïane, O., & Osornio-Vargas, A. (2017). A systematic review of data mining and machine learning for air pollution epidemiology. BMC public health, 17(1), 1-19.
Biggeri, A., Bellini, P., & Terracini, B. (2001). Meta-analysis of the Italian studies on short-term effects of air pollution. Epidemiologia e prevenzione, 25(2 Suppl), 1-71.
Bird, M. G., Greim, H., Snyder, R., & Rice, J. M. (2005). International symposium: Recent advances in benzene toxicity. Chemico-biological interactions, 153, 1-5.
Bono, R., Degan, R., Pazzi, M., Romanazzi, V., & Rovere, R. (2010). Benzene and formaldehyde in air of two winter Olympic venues of “Torino 2006”. Environment international, 36(3), 269-275.
Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R. V., Dentener, F., ... & Cohen, A. (2016). Ambient air pollution exposure estimation for the global burden of disease 2013. Environmental science & technology, 50(1), 79-88.
Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R. V., Dentener, F., ... & Cohen, A. (2016). Ambient air pollution exposure estimation for the global burden of disease 2013. Environmental science & technology, 50(1), 79-88.
Briggs, D. (2005). The role of GIS: coping with space (and time) in air pollution exposure assessment. Journal of Toxicology and Environmental Health, Part A, 68(13-14), 1243-1261.
Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., ... & Van Der Veen, A. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11(7), 699-718.
Buczynska, A. J., Krata, A., Stranger, M., Godoi, A. F. L., Kontozova-Deutsch, V., Bencs, L., ... & Van Grieken, R. (2009). Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmospheric Environment, 43(2), 311-318.
Buzica, D., Gerboles, M., & Plaisance, H. (2008). The equivalence of diffusive samplers to reference methods for monitoring O3, benzene and NO2 in ambient air. Journal of Environmental Monitoring, 10(9), 1052-1059.
Canada. (2012). Canadian Council of Ministers of Environment Canada-wide Standard for Benzene 2010 Final Report.
Carr, D., von Ehrenstein, O., Weiland, S., Wagner, C., Wellie, O., Nicolai, T., & von Mutius, E. (2002). Modeling annual benzene, toluene, NO2, and soot concentrations on the basis of road traffic characteristics. Environmental research, 90(2), 111-118.
Cerón-Bretón, J. G., Cerón-Bretón, R. M., Kahl, J. D. W., Ramírez-Lara, E., Guarnaccia, C., Aguilar-Ucán, C. A., ... & López-Chuken, U. (2015). Diurnal and seasonal variation of BTEX in the air of Monterrey, Mexico: preliminary study of sources and photochemical ozone pollution. Air Quality, Atmosphere & Health, 8(5), 469-482.
Chandra, B. P., & Sinha, V. (2016). Contribution of post-harvest agricultural paddy residue fires in the NW Indo-Gangetic Plain to ambient carcinogenic benzenoids, toxic isocyanic acid and carbon monoxide. Environment international, 88, 187-197.
Chen, T. H., Hsu, Y. C., Zeng, Y. T., Lung, S. C. C., Su, H. J., Chao, H. J., & Wu, C. D. (2020). A hybrid kriging/land-use regression model with Asian culture-specific sources to assess NO2 spatial-temporal variations. Environmental Pollution, 259, 113875.
Chiu, K. H., Sree, U., Tseng, S. H., Wu, C. H., & Lo, J. G. (2005). Differential optical absorption spectrometer measurement of NO2, SO2, O3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan. Atmospheric Environment, 39(5), 941-955.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., ... & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907-1918.
Diem, J. E., & Comrie, A. C. (2002). Predictive mapping of air pollution involving sparse spatial observations. Environmental pollution, 119(1), 99-117.
Duarte-Davidson, R., Courage, C., Rushton, L., & Levy, L. (2001). Benzene in the environment: an assessment of the potential risks to the health of the population. Occupational and environmental medicine, 58(1), 2-13.
Edokpolo, B., Yu, Q. J., & Connell, D. (2015). Health risk assessment for exposure to benzene in petroleum refinery environments. International journal of environmental research and public health, 12(1), 595-610.
Edokpolo, B., Yu, Q. J., & Connell, D. (2015). Health risk assessment for exposure to benzene in petroleum refinery environments. International journal of environmental research and public health, 12(1), 595-610.
Eeftens, M., Beelen, R., de Hoogh, K., Bellander, T., Cesaroni, G., Cirach, M., ... & Hoek, G. (2012). Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environmental science & technology, 46(20), 11195-11205.
Emerson, R. W. (2020). Regression Analysis and Adjusted R2. Journal of Visual Impairment & Blindness, 114(4), 332-334.
Fanizza, C., Incoronato, F., Baiguera, S., Schiro, R., & Brocco, D. (2014). Volatile organic compound levels at one site in Rome urban air. Atmospheric Pollution Research, 5(2), 303-314.
Feng, R., Zheng, H. J., Gao, H., Zhang, A. R., Huang, C., Zhang, J. X., ... & Fan, J. R. (2019). Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: a case study in Hangzhou, China. Journal of cleaner production, 231, 1005-1015.
Fernandez-Martinez, G., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D., & Fernández-Fernández, E. (2001). Measurement of volatile organic compounds in urban air of La Coruña, Spain. Water, Air, and Soil Pollution, 129(1), 267-288.
Fernandez-Villarrenaga, V., López-Mahıa, P., Muniategui-Lorenzo, S., Prada-Rodrıguez, D., Fernandez-Fernandez, E., & Tomas, X. (2004). C1 to C9 volatile organic compound measurements in urban air. Science of the Total Environment, 334, 167-176.
Fernández-Villarrenaga, V., López-Mahía, P., Muniategui-Lorenzo, S., & Prada-Rodríguez, D. (2005). Possible influence of a gas station on volatile organic compound levels in the ambient air of an urban area. Fresenius Environmental Bulletin, 14(5), 368-372.
Fridh, S., & Stuart, A. L. (2014). Spatial variation in ambient benzene concentrations over a city park. Journal of environmental health, 76(6), 86-91.
Galbally, I. E., Lawson, S. J., Weeks, I. A., Bentley, S. T., Gillett, R. W., Meyer, M., & Goldstein, A. H. (2007). Volatile organic compounds in marine air at Cape Grim, Australia. Environmental Chemistry, 4(3), 178-182.
Galbraith, D., Gross, S. A., & Paustenbach, D. (2010). Benzene and human health: a historical review and appraisal of associations with various diseases. Critical reviews in toxicology, 40(sup2), 1-46.
GBD 2015 Chronic Respiratory Disease Collaborators. (2017). Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. Respiratory Medicine, 5(9), 691.
Gist, G. L., & Burg, J. R. (1997). Benzene—a review of the literature from a health effects perspective. Toxicology and industrial health, 13(6), 661-714.
Glass, D. C., Gray, C. N., Jolley, D. J., Gibbons, C., Sim, M. R., Fritschi, L., ... & Manuell, R. (2003). Leukemia risk associated with low-level benzene exposure. Epidemiology, 569-577.
Guerreiro, C. B., Foltescu, V., & De Leeuw, F. (2014). Air quality status and trends in Europe. Atmospheric environment, 98, 376-384.
Hajizadeh, Y., Teiri, H., Nazmara, S., & Parseh, I. (2018). Environmental and biological monitoring of exposures to VOCs in a petrochemical complex in Iran. Environmental Science and Pollution Research, 25(7), 6656-6667.
Hakkim, H., Sinha, V., Chandra, B. P., Kumar, A., Mishra, A. K., Sinha, B., ... & Rajeevan, M. (2019). Volatile organic compound measurements point to fog-induced biomass burning feedback to air quality in the megacity of Delhi. Science of The Total Environment, 689, 295-304.
Hasenfratz, D., Saukh, O., Walser, C., Hueglin, C., Fierz, M., & Thiele, L. (2014, March). Pushing the spatio-temporal resolution limit of urban air pollution maps. In 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom) (pp. 69-77). IEEE.
Hasenfratz, D., Saukh, O., Walser, C., Hueglin, C., Fierz, M., Arn, T., ... & Thiele, L. (2015). Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive and Mobile Computing, 16, 268-285.
Hashad, K., Gu, J., Yang, B., Rong, M., Chen, E., Ma, X., & Zhang, K. M. (2021). Designing roadside green infrastructure to mitigate traffic-related air pollution using machine learning. Science of The Total Environment, 773, 144760.
He, Z., Li, G., Chen, J., Huang, Y., An, T., & Zhang, C. (2015). Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environment international, 77, 85-94.
Hippelein, M. (2004). Background concentrations of individual and total volatile organic compounds in residential indoor air of Schleswig-Holstein, Germany. Journal of Environmental Monitoring, 6(9), 745-752.
Hoek, G., Beelen, R., De Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric environment, 42(33), 7561-7578.
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B., & Kaufman, J. D. (2013). Long-term air pollution exposure and cardio-respiratory mortality: a review. Environmental health, 12(1), 1-16.
Hong, N., Liu, A., Zhu, P., Zhao, X., Guan, Y., Yang, M., & Wang, H. (2018). Modelling benzene series pollutants (BTEX) build-up loads on urban roads and their human health risks: implications for stormwater reuse safety. Ecotoxicology and environmental safety, 164, 234-242.
Hoque, R. R., Khillare, P. S., Agarwal, T., Shridhar, V., & Balachandran, S. (2008). Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Science of the total environment, 392(1), 30-40.
Hosaini, P. N., Khan, M. F., Mustaffa, N. I. H., Amil, N., Mohamad, N., Jaafar, S. A., ... & Latif, M. T. (2017). Concentration and source apportionment of volatile organic compounds (VOCs) in the ambient air of Kuala Lumpur, Malaysia. Natural Hazards, 85(1), 437-452.
Hoshi, J. Y., Amano, S., Sasaki, Y., & Korenaga, T. (2008). Investigation and estimation of emission sources of 54 volatile organic compounds in ambient air in Tokyo. Atmospheric Environment, 42(10), 2383-2393.
Huang, Y., Ling, Z. H., Lee, S. C., Ho, S. S. H., Cao, J. J., Blake, D. R., ... & Louie, P. K. (2015). Characterization of volatile organic compounds at a roadside environment in Hong Kong: an investigation of influences after air pollution control strategies. Atmospheric Environment, 122, 809-818.
Hussam, A., Alauddin, M., Khan, A. H., Chowdhury, D., Bibi, H., Bhattacharjee, M., & Sultana, S. (2002). Solid phase microextraction: measurement of volatile organic compounds (VOCs) in Dhaka city air pollution. Journal of Environmental Science and Health, Part A, 37(7), 1223-1239.
Jerrett, M., Burnett, R. T., Ma, R., Pope III, C. A., Krewski, D., Newbold, K. B., ... & Thun, M. J. (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 727-736.
Johnson, M., Isakov, V., Touma, J. S., Mukerjee, S., & Özkaynak, H. (2010). Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmospheric Environment, 44(30), 3660-3668.
Joss, M. K., Eeftens, M., Gintowt, E., Kappeler, R., & Künzli, N. (2017). Time to harmonize national ambient air quality standards. International Journal of Public Health, 62(4), 453-462.
Kanjanasiranont, N., Prueksasit, T., Morknoy, D., Tunsaringkarn, T., Sematong, S., Siriwong, W., ... & Rungsiyothin, A. (2016). Determination of ambient air concentrations and personal exposure risk levels of outdoor workers to carbonyl compounds and BTEX in the inner city of Bangkok, Thailand. Atmospheric Pollution Research, 7(2), 268-277.
Kansal, A. (2009). Sources and reactivity of NMHCs and VOCs in the atmosphere: A review. Journal of hazardous materials, 166(1), 17-26.
Kesselmeier, J., Kuhn, U., Wolf, A., Andreae, M. O., Ciccioli, P., Brancaleoni, E., ... & Artaxo, P. (2000). Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmospheric Environment, 34(24), 4063-4072.
Khalade, A., Jaakkola, M. S., Pukkala, E., & Jaakkola, J. J. (2010). Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis. Environmental Health, 9(1), 1-8.
Kheirbek, I., Johnson, S., Ross, Z., Pezeshki, G., Ito, K., Eisl, H., & Matte, T. (2012). Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study. Environmental Health, 11(1), 1-12.
Khillare, P. S., Hoque, R. R., Shridhar, V., Agarwal, T., & Balachandran, S. (2008). Temporal variability of benzene concentration in the ambient air of Delhi: a comparative assessment of pre-and post-CNG periods. Journal of hazardous materials, 154(1-3), 1013-1018.
Kumar, A., & Tyagi, S. K. (2006). Benzene and toluene profiles in ambient air of Delhi as determined by active sampling and GC analysis.
Künzli, N., Joss, M. K., & Gintowt, E. (2015). Global standards for global health in a globalized economy!.
Kuo, H. W., Wei, H. C., Liu, C. S., Lo, Y. Y., Wang, W. C., Lai, J. S., & Chan, C. C. (2000). Exposure to volatile organic compounds while commuting in Taichung, Taiwan. Atmospheric Environment, 34(20), 3331-3336.
Leach, L. F., & Henson, R. K. (2007). The use and impact of adjusted R2 effects in published regression research. Multiple Linear Regression Viewpoints, 33(1), 1-11.
Leong, S. T., Muttamara, S., & Laortanakul, P. (2002). Influence of benzene emission from motorcycle on Bangkok air quality. Atmospheric Environment, 36(4), 651-661.
Li, L., Li, H., Zhang, X., Wang, L., Xu, L., Wang, X., ... & Cao, G. (2014). Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China. Journal of Environmental Sciences, 26(1), 214-223.
Lin, T. Y., Sree, U., Tseng, S. H., Chiu, K. H., Wu, C. H., & Lo, J. G. (2004). Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmospheric Environment, 38(25), 4111-4122.
Lipfert, F. W. (2017). A critical review of the ESCAPE project for estimating long-term health effects of air pollution. Environment international, 99, 87-96.
Liu, A., Hong, N., Zhu, P., & Guan, Y. (2018). Understanding benzene series (BTEX) pollutant load characteristics in the urban environment. Science of the Total Environment, 619, 938-945.
Liu, W. T., Hsieh, H. C., Chen, S. P., Chang, J. S., Lin, N. H., Chang, C. C., & Wang, J. L. (2012). Diagnosis of air quality through observation and modeling of volatile organic compounds (VOCs) as pollution tracers. Atmospheric environment, 55, 56-63.
Loomis, D., Guyton, K. Z., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., ... & Straif, K. (2017). Carcinogenicity of benzene. The Lancet Oncology, 18(12), 1574-1575.
Loughner, C. P., Tzortziou, M., Shroder, S., & Pickering, K. E. (2016). Enhanced dry deposition of nitrogen pollution near coastlines: A case study covering the Chesapeake Bay estuary and Atlantic Ocean coastline. Journal of Geophysical Research: Atmospheres, 121(23), 14-221.
Ma, J., Ding, Y., Cheng, J. C., Jiang, F., & Wan, Z. (2019). A temporal-spatial interpolation and extrapolation method based on geographic Long Short-Term Memory neural network for PM2. 5. Journal of Cleaner Production, 237, 117729.
Marshall, J. D., Nethery, E., & Brauer, M. (2008). Within-urban variability in ambient air pollution: comparison of estimation methods. Atmospheric Environment, 42(6), 1359-1369.
Massolo, L., Rehwagen, M., Porta, A., Ronco, A., Herbarth, O., & Mueller, A. (2010). Indoor–outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environmental toxicology, 25(4), 339-349.
Matysik, S., & Schlink, U. (2010). Spatial and temporal variation of outdoor and indoor exposure of volatile organic compounds in Greater Cairo. Atmospheric Pollution Research, 1(2), 94-101.
Mehta, S., & Kumar, V. (2019). Perils of climate change in the Bay of Bengal: India–Bangladesh in perspective. Journal of the Indian Ocean Region, 15(3), 363-372.
Menezes, H. C., Amorim, L. C., & Cardeal, Z. L. (2009). Sampling of benzene in environmental and exhaled air by solid-phase microextraction and analysis by gas chromatography–mass spectrometry. Analytical and bioanalytical chemistry, 395(8), 2583-2589.
Millán, M. M., Alonso, L. A., Legarreta, J. A., de Torrontegui, L. L., Albizu, M. V., Ureta, I., & Egusquiaguirre, C. (1984). A fumigation episode in an industrialized estuary: Bilbao, November 1981. Atmospheric Environment (1967), 18(3), 563-572.
Modig, L., Sunesson, A. L., Levin, J. O., Sundgren, M., Hagenbjörk-Gustafsson, A., & Forsberg, B. (2004). Can NO2 be used to indicate ambient and personal levels of benzene and 1, 3-butadiene in air?. Journal of Environmental Monitoring, 6(12), 957-962.
Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Gehring, U., Koletzko, S., ... & Heinrich, J. (2007). Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occupational and environmental medicine, 64(1), 8-16.
Mukerjee, S., Norris, G. A., Smith, L. A., Noble, C. A., Neas, L. M., Özkaynak, A. H., & Gonzales, M. (2004). Receptor model comparisons and wind direction analyses of volatile organic compounds and submicrometer particles in an arid, binational, urban air shed. Environmental science & technology, 38(8), 2317-2327.
Mukerjee, S., Oliver, K. D., Seila, R. L., Jacumin Jr, H. H., Croghan, C., Daughtrey Jr, E. H., ... & Smith, L. A. (2009). Field comparison of passive air samplers with reference monitors for ambient volatile organic compounds and nitrogen dioxide under week-long integrals. Journal of Environmental Monitoring, 11(1), 220-227.
Mukerjee, S., Smith, L., Neas, L., & Norris, G. (2012). Evaluation of land use regression models for nitrogen dioxide and benzene in four US cities. The Scientific World Journal, 2012.
Murena, F. (2007). Air quality nearby road traffic tunnel portals: BTEX monitoring. Journal of Environmental Sciences, 19(5), 578-583.
Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental health perspectives, 121(3), 295-302.
Nerín, C., Acosta, D., & Rubio, C. (2002). Potential migration release of volatile compounds from plastic containers destined for food use in microwave ovens. Food Additives & Contaminants, 19(6), 594-601.
Noe, D. A. (2020). Performance characteristics of the adjusted r2 algorithm for determining the start of the terminal disposition phase and comparison with a simple r2 algorithm and a visual inspection method. Pharmaceutical statistics, 19(2), 88-100.
North, G. R., Mengel, J. G., & Short, D. A. (1983). Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the ice ages. Journal of Geophysical Research: Oceans, 88(C11), 6576-6586.
Ohtani, K. (2000). Bootstrapping R2 and adjusted R2 in regression analysis. Economic Modelling, 17(4), 473-483.
Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric pollution research, 5(1), 79-86.
Pang, Y., Fuentes, M., & Rieger, P. (2015). Trends in selected ambient volatile organic compound (VOC) concentrations and a comparison to mobile source emission trends in California's South Coast Air Basin. Atmospheric Environment, 122, 686-695.
Pankow, J. F., Luo, W., Bender, D. A., Isabelle, L. M., Hollingsworth, J. S., Chen, C., ... & Zogorski, J. S. (2003). Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmospheric Environment, 37(36), 5023-5046.
Pope, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation toxicology, 7(1), 1-18.
Purohit, P., Amann, M., Kiesewetter, G., Rafaj, P., Chaturvedi, V., Dholakia, H. H., ... & Sander, R. (2019). Mitigation pathways towards national ambient air quality standards in India. Environment international, 133, 105147.
Qi, Z., Wang, T., Song, G., Hu, W., Li, X., & Zhang, Z. (2018). Deep air learning: Interpolation, prediction, and feature analysis of fine-grained air quality. IEEE Transactions on Knowledge and Data Engineering, 30(12), 2285-2297.
Rajabi, H., Mosleh, M. H., Mandal, P., Lea-Langton, A., & Sedighi, M. (2020). Emissions of volatile organic compounds from crude oil processing–Global emission inventory and environmental release. Science of The Total Environment, 138654.
Rao, P. S., Ansari, M. F., Gavane, A. G., Pandit, V. I., Nema, P., & Devotta, S. (2007). Seasonal variation of toxic benzene emissions in petroleum refinery. Environmental monitoring and assessment, 128(1), 323-328.
Rao, P. S., Ansari, M. F., Gavane, A. G., Pandit, V. I., Nema, P., & Devotta, S. (2007). Seasonal variation of toxic benzene emissions in petroleum refinery. Environmental monitoring and assessment, 128(1), 323-328.
Raun, L. H., Marks, E. M., & Ensor, K. B. (2009). Detecting improvement in ambient air toxics: an application to ambient benzene measurements in Houston, Texas. Atmospheric Environment, 43(20), 3259-3266.
Ren, X., Mi, Z., & Georgopoulos, P. G. (2020). Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environment International, 142, 105827.
Riediker, M., Williams, R., Devlin, R., Griggs, T., & Bromberg, P. (2003). Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environmental science & technology, 37(10), 2084-2093.
Rinsky, R. A. (1989). Benzene and leukemia: an epidemiologic risk assessment. Environmental health perspectives, 82, 189-191.
Rinsky, R. A., Smith, A. B., Hornung, R., Filloon, T. G., Young, R. J., Okun, A. H., & Landrigan, P. J. (1987). Benzene and leukemia. New England journal of medicine, 316(17), 1044-1050.
Rinsky, R. A., Young, R. J., & Smith, A. B. (1981). Leukemia in benzene workers. American Journal of Industrial Medicine, 2(3), 217-245.
Roukos, J., Locoge, N., Sacco, P., & Plaisance, H. (2011). Radial diffusive samplers for determination of 8-h concentration of BTEX, acetone, ethanol and ozone in ambient air during a sea breeze event. Atmospheric Environment, 45(3), 755-763.
Sahu, S. K., Zhang, H., Guo, H., Hu, J., Ying, Q., & Kota, S. H. (2019). Health risk associated with potential source regions of PM2.5 in indian cities. Air Quality, Atmosphere & Health, 12(3), 327-340.
Samal, K. K. R., Babu, K. S., Das, S. K., & Acharaya, A. (2019, August). Time series based air pollution forecasting using SARIMA and prophet model. In proceedings of the 2019 international conference on information technology and computer communications (pp. 80-85).
Savitz, D. A., & Andrews, K. W. (1997). Review of epidemiologic evidence on benzene and lymphatic and hematopoietic cancers. American journal of industrial medicine, 31(3), 287-295.
Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (2003). Chemistry for environmental engineering and science (Vol. 5, p. 587590). New York: McGraw-Hill.
Schiavon, M., Redivo, M., Antonacci, G., Rada, E. C., Ragazzi, M., Zardi, D., & Giovannini, L. (2015). Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy). Atmospheric Environment, 120, 234-243.
Sekar, A., Varghese, G. K., & Varma, M. R. (2019). Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment. Heliyon, 5(11), e02918.
Singh, H. B., Salas, L. J., Cantrell, B. K., & Redmond, R. M. (1985). Distribution of aromatic hydrocarbons in the ambient air. Atmospheric Environment (1967), 19(11), 1911-1919.
Singh, K. P., Gupta, S., Kumar, A., & Shukla, S. P. (2012). Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment, 426, 244-255.
Skov, H., Hansen, A. B., Lorenzen, G., Andersen, H. V., Løfstrøm, P., & Christensen, C. S. (2001). Benzene exposure and the effect of traffic pollution in Copenhagen, Denmark. Atmospheric Environment, 35(14), 2463-2471.
Smith, L. A., Stock, T. H., Chung, K. C., Mukerjee, S., Liao, X. L., Stallings, C., & Afshar, M. (2007). Spatial analysis of volatile organic compounds from a community-based air toxics monitoring network in Deer Park, Texas, USA. Environmental Monitoring and Assessment, 128(1), 369-379.
Snyder, R. (2012). Leukemia and benzene. International journal of environmental research and public health, 9(8), 2875-2893.
Srivastava, A., & Singh, R. N. (2005). Use of multimedia mass balance model to predict concentrations of benzene in microenvironment in air. Environmental Modelling & Software, 20(1), 1-5.
Stavrakou, T., Müller, J. F., Boersma, K. F., De Smedt, I., & Van Der A, R. J. (2008). Assessing the distribution and growth rates of NOx emission sources by inverting a 10‐year record of NO2 satellite columns. Geophysical Research Letters, 35(10).
Steffen, C., Auclerc, M. F., Auvrignon, A., Baruchel, A., Kebaili, K., Lambilliotte, A., ... & Clavel, J. (2004). Acute childhood leukaemia and environmental exposure to potential sources of benzene and other hydrocarbons; a case-control study. Occupational and Environmental Medicine, 61(9), 773-778.
Su, J. G., Jerrett, M., & Beckerman, B. (2009). A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures. Science of the total environment, 407(12), 3890-3898.
Sun, H., Gui, D., Yan, B., Liu, Y., Liao, W., Zhu, Y., ... & Zhao, N. (2016). Assessing the potential of random forest method for estimating solar radiation using air pollution index. Energy Conversion and Management, 119, 121-129.
Szpiro, A. A., Sampson, P. D., Sheppard, L., Lumley, T., Adar, S. D., & Kaufman, J. D. (2010). Predicting intra‐urban variation in air pollution concentrations with complex spatio‐temporal dependencies. Environmetrics, 21(6), 606-631.
Truc, V. T. Q., & Oanh, N. T. K. (2007). Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmospheric Environment, 41(36), 7685-7697.
Tsai, D. H., Wang, J. L., Chuang, K. J., & Chan, C. C. (2010). Traffic-related air pollution and cardiovascular mortality in central Taiwan. Science of the Total Environment, 408(8), 1818-1823.
Tzanis, C. G., Alimissis, A., Philippopoulos, K., & Deligiorgi, D. (2019). Applying linear and nonlinear models for the estimation of particulate matter variability. Environmental Pollution, 246, 89-98.
U.S. Department of Health and Human Services. (2007). Public Health Service Agency for Toxic Substances and Disease Registry.
U.S. Environmental Protection Agency. (2012). Integrated Risk Information System (IRIS) on Benzene. National Center for Environmental Assessment, Office of Research and Development, Washington, DC.
Ugrekhelidze, D., Korte, F., & Kvesitadze, G. (1997). Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicology and environmental safety, 37(1), 24-29.
Upmanis, H., Eliasson, I., & Andersson-Sköld, Y. (2001). Case studies of the spatial variation of benzene and toluene concentrations in parks and adjacent built-up areas. Water, air, and soil pollution, 129(1), 61-81.
Van Winkle, M. R., & Scheff, P. A. (2001). Volatile organic compounds, polycyclic aromatic hydrocarbons and elements in the air of ten urban homes. Indoor air, 11(1), 49-64.
Vigliani, E. C., & Saita, G. (1964). Benzene and leukemia. New England journal of medicine, 271(17), 872-876.
Vikrant, K., Kim, K. H., Peng, W., Ge, S., & Ok, Y. S. (2020). Adsorption performance of standard biochar materials against volatile organic compounds in air: A case study using benzene and methyl ethyl ketone. Chemical Engineering Journal, 387, 123943.
Wallace, L. (1990). Major Sources of Exposure to Benzene and Other Volatile Organic Chemicals 1, 2. Risk Analysis, 10(1), 59-64.
Wallace, L. A. (1989). Major sources of benzene exposure. Environmental Health Perspectives, 82, 165-169.;Weisel, C. P. (2010). Benzene exposure: an overview of monitoring methods and their findings. Chemico-biological interactions, 184(1-2), 58-66.
Wallace, L. A. (1989). The exposure of the general population to benzene. Cell biology and toxicology, 5(3), 297-314.
Wang, A., Fallah-Shorshani, M., Xu, J., & Hatzopoulou, M. (2016). Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements. Atmospheric Environment, 142, 452-464.
Wang, M., Aaron, C. P., Madrigano, J., Hoffman, E. A., Angelini, E., Yang, J., ... & Barr, R. G. (2019). Association between long-term exposure to ambient air pollution and change in quantitatively assessed emphysema and lung function. Jama, 322(6), 546-556.
Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567-1584.
Weichenthal, S., Kulka, R., Dubeau, A., Martin, C., Wang, D., & Dales, R. (2011). Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environmental health perspectives, 119(10), 1373-1378.
Wen, Z., Wang, Z., Zhou, J., & Cen, K. (2009). A theoretical study on the mechanism and kinetic of the reaction between ozone and benzene. Ozone: science & engineering, 31(5), 393-401.
Weng, H. H., Tsai, S. S., Chiu, H. F., Wu, T. N., & Yang, C. Y. (2008). Childhood leukemia and traffic air pollution in Taiwan: petrol station density as an indicator. Journal of Toxicology and Environmental Health, Part A, 72(2), 83-87.
Whitworth, K. W., Symanski, E., Lai, D., & Coker, A. L. (2011). Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study. Environmental Health, 10(1), 1-10.
Widiana, D. R., Wang, Y. F., You, S. J., Yang, H. H., Wang, L. C., Tsai, J. H., & Chen, H. M. (2019). Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant, Taiwan. Aerosol and Air Quality Research, 19(2), 375-382.
Wilbur, S. B., Keith, S., Faroon, O., & Wohlers, D. (2007). Toxicological profile for benzene.
Wong, P. Y., Hsu, C. Y., Wu, J. Y., Teo, T. A., Huang, J. W., Guo, H. R., ... & Spengler, J. D. (2021). Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan. Environmental Modelling & Software, 139, 104996.
World Health Organization (WHO). (1999). Air quality guidelines for Europe. WHO regional publication, European series. World Health Organization, Regional Office for Europe, Copenhagen.
World Health Organization (WHO). (2015). Agents Classified by the IARC Monographs, Volumes 1–111
Wu, C. D., Chen, Y. C., Pan, W. C., Zeng, Y. T., Chen, M. J., Guo, Y. L., & Lung, S. C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environmental Pollution, 224, 148-157.
Wu, C. D., Zeng, Y. T., & Lung, S. C. C. (2018). A hybrid kriging/land-use regression model to assess PM2. 5 spatial-temporal variability. Science of the Total Environment, 645, 1456-1464.
Xu, Y., Yang, W., & Wang, J. (2017). Air quality early-warning system for cities in China. Atmospheric Environment, 148, 239-257.
Yang, D. S., Pennisi, S. V., Son, K. C., & Kays, S. J. (2009). Screening indoor plants for volatile organic pollutant removal efficiency. HortScience, 44(5), 1377-1381.
Yu, R., Yang, Y., Yang, L., Han, G., & Move, O. A. (2016). RAQ–A random forest approach for predicting air quality in urban sensing systems. Sensors, 16(1), 86.
Zaidan, M. A., Dada, L., Alghamdi, M. A., Al-Jeelani, H., Lihavainen, H., Hyvärinen, A., & Hussein, T. (2019). Mutual information input selector and probabilistic machine learning utilisation for air pollution proxies. Applied sciences, 9(20), 4475.
Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7), 373.
Zhao, L., Wang, X., He, Q., Wang, H., Sheng, G., Chan, L. Y., ... & Blake, D. R. (2004). Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China. Atmospheric Environment, 38(36), 6177-6184.
Zhu, X., Fan, Z. T., Wu, X., Meng, Q., Wang, S. W., Tang, X., ... & Lioy, P. (2008). Spatial variation of volatile organic compounds in a “Hot Spot” for air pollution. Atmospheric Environment, 42(32), 7329-7338.
校內:2026-07-29公開