簡易檢索 / 詳目顯示

研究生: 徐久翔
Hsu, Chiu-Hsiang
論文名稱: 基於動態超表面天線之大規模多用戶下鏈無線系統的優化設計
Efficient Algorithms for Optimizing Dynamic Metasurface Antennas-Based Massive Multiuser MISO Downlink Systems
指導教授: 陳榮杰
Chen, Jung-Chieh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 49
中文關鍵詞: 動態超表面天線交替最佳化編碼器
外文關鍵詞: Dynamic metasurface antenna, alternating optimization, precoder
相關次數: 點閱:73下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討的是在大規模多用戶多輸入單輸出下行鏈路無線通訊系統中,使用
    基於動態超表面天線 (DMA) 架構的基地台,為多個單天線用戶提供服務的場景。我們的目標是聯合最佳化預編碼器和 DMA 的電磁超材料元件係數,以最大化系統的加權總速率。由於這些參數互相耦合,且在電磁超材料元件係數的限制條件中具有非凸性,因此這項任務極具挑戰性。現有的解決方法 AO-RMO 是採用基於交替最佳化 (AO) 框架的演算法來克服這個問題。具體而言,使用加權最小均方誤差 (WMMSE) 演算法來設計預編碼器,並使用黎曼流形最佳化 (RMO) 來處理 DMA 的電磁超材料元件係數。雖然 AO-RMO 演算法在效能上表現卓越,但其時間複雜度和計算複雜度相對較高。為了解決這個問題,我們提出了一種計算效率更高的替代方法:基於投影梯度下降法 (PGD) 的演算法,以最佳化 DMA 的電磁超材料元件係數。此外,為了符合實際應用的需求,我們提出了基於交叉熵最佳化法 (CEO) 的演算法來設計具有離散值的電磁超材料元件係數。模擬結果顯示,在考慮連續型電磁超材料元件係數的情況下,我們提出的 AO-PGD 演算法實現了接近 AO-RMO 的效能,同時在時間複雜度和計算複雜度方面都優於 AO-RMO。當考慮離散型的電磁超材料元件係數時,我們提出的 AO-CEO 演算法提供了卓越的效能表現。

    The research topic of this paper is the dynamic metasurface antenna (DMA). In our system model, a base station based on the DMA architecture is employed to provide services to users, operating in a millimeter-wave channel environment. To optimize the overall system weighted sum rate, we aim to jointly design the precoder and coefficients of the DMA. The challenge in this task lies in the Lorentzian-constrained model of the DMA coefficients. Existing literature has proposed Riemannian manifold optimization (RMO) to address this issue, but its computational and time complexity is high. To improve this problem, we propose the projection gradient descent (PGD) algorithm to enhance execution speed. Additionally, in practical applications, the DMA coefficients should consider discrete phase shifts, and for this issue, we propose the cross entropy optimization (CEO) to resolve it.

    中文摘要 I Abstract II 誌謝 IX 目錄 X 圖目錄 XII 符號說明 XIII 第一章 緒論 1 1-1. 研究背景 1 1-2. 文獻回顧 2 1-3. 研究動機 3 1-4. 章節架構 3 第二章 系統模型與問題描述 4 2-1. 系統模型 4 2-2. 問題描述 7 2-2.1 連續型電磁超材料元件係數問題 9 2-2.2 離散型電磁超材料元件係數問題 10 第三章 連續型電磁超材料元件係數設計 11 3-1. 投影梯度下降法 11 3-2. 交替投影梯度下降法 14 第四章 離散型電磁超材料元件係數設計 16 4-1. 交叉熵最佳化法 16 4-2. 交替交叉熵最佳化法 21 第五章 模擬結果與討論 22 5-1. 模擬環境與參數設定 22 5-2. 演算法收斂行為分析 23 5-3. 動態超表面天線尺寸對加權總速率的影響 25 5-4. 用戶數目對加權總速率的影響 27 5-5. 基地台與用戶的距離對加權總速率的影響 28 第六章 結論與未來研究方向 29 參考文獻 30

    [1] M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G. K. Karagiannidis, E. Björnson, K. Yang, C.-L. I, and A. Ghosh, “Millimeter wave communications for future mobile networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1935, Jun. 2017.

    [2] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip,“Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.

    [3] G. R. MacCartney and T. S. Rappaport, “Rural macrocell path loss models for millimeter wave wireless communications,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1663–1677, Apr. 2017.

    [4] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar,“Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results,” IEEE Commun. Mag., vol. 52, no. 2,pp. 106–113, Feb. 2014.

    [5] A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Commun. Mag., vol. 52, no. 12, pp. 122–131, Dec. 2014.

    [6] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath,“Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE J Sel Top Signal Process, vol. 8, no. 5, pp. 831–846, Jul. 2014.

    [7] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J Sel Top Signal Process, vol. 10, no. 3, pp. 436–453, Feb. 2016.

    [8] G. Lan, M. F. Imani, P. d. Hougne, W. Hu, D. R. Smith, and M. Gorlatova,“Wireless sensing using dynamic metasurface antennas: Challenges and opportunities,”IEEE Commun. Mag., vol. 58, no. 6, pp. 66–71, Jun. 2020.

    [9] I. Yoo and D. R. Smith, “Dynamic metasurface antennas for higher-order MIMO systems in indoor environments,” IEEE Wirel. Commun. Lett., vol. 9, no. 7, pp. 1129–1132, Mar. 2020.

    [10] H. Xu, D.-F. Guan, B. Peng, Z. Liu, S. Yong, and Y. Liu, “Radar one-dimensional range profile dynamic jamming based on programmable metasurface,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 10, pp. 1883–1887, Jul. 2021.

    [11] T. Liang, Z. Wang, and Y. Dong, “A beamwidth and steering reconfigurable active integrated metasurface antenna for dynamic radiation control,” IEEE Trans. Antennas Propag., vol. 70, no. 10, pp. 9006–9016, May. 2022.

    [12] S. Vellucci, M. Longhi, A. Monti, M. Barbuto, A. Toscano, and F. Bilotti “Phasegradient huygens’ metasurface coatings for dynamic beamforming in linear antennas,”IEEE Trans. Antennas Propag., vol. 71, no. 10, pp. 7752–7765, Jul. 2023.

    [13] N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith,“Dynamic metasurface antennas for 6G extreme massive MIMO communications,”IEEE Wirel. Commun., vol. 28, no. 2, pp. 106–113, Jan. 2021.

    [14] I. Yoo, M. F. Imani, T. Sleasman, H. D. Pfister, and D. R. Smith, “Enhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channels,” IEEE Trans. Commun., vol. 67, no. 2, pp. 1070–1084,Oct. 2019.

    [15] N. Shlezinger, O. Dicker, Y. C. Eldar, I. Yoo, M. F. Imani, and D. R. Smith,“Dynamic metasurface antennas for uplink massive MIMO systems,” IEEE Trans. Commun., vol. 67, no. 10, pp. 6829–6843, Jul. 2019.

    [16] M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling
    for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antennas Propag., vol. 63, no. 4, pp. 1881–1886, Feb. 2015.

    [17] A. M. Molaei, T. Fromenteze, S. Hu, V. Fusco, and O. Yurduseven, “Fourier-based nearfield three-dimensional image reconstruction in a multistatic imaging structure using dynamic metasurface antennas,” IEEE Trans Comput Imaging, vol. 8, pp. 1089–1100, Dec. 2022.

    [18] H. Wang, N. Shlezinger, Y. C. Eldar, S. Jin, M. F. Imani, I. Yoo, and D. R. Smith,“Dynamic metasurface antennas for MIMO-OFDM receivers with bit-limited ADCs,”IEEE Trans. Commun., vol. 69, no. 4, pp. 2643–2659, Nov. 2021.

    [19] H. Zhang, N. Shlezinger, F. Guidi, D. Dardari, M. F. Imani, and Y. C. Eldar, “Beam focusing for multi-user MIMO communications with dynamic metasurface antennas,”pp. 4780–4784, Jun. 2021.

    [20] ——, “Beam focusing for near-field multiuser MIMO communications,” IEEE Trans. Wirel. Commun., vol. 21, no. 9, pp. 7476–7490, Mar. 2022.

    [21] S. F. Kimaryo and K. Lee, “Downlink beamforming for dynamic metasurface antennas,”IEEE Trans. Wirel. Commun., vol. 22, no. 7, pp. 4745–4755, Dec. 2023.

    [22] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Trans. Wirel. Commun., vol. 19, no. 5, pp. 3064–3076, Feb. 2020.

    [23] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted mmse approach to distributed sum-utility maximization for a mimo interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Apr. 2011.

    [24] J. Han, L. Li, X. Ma, X. Gao, Y. Mu, G. Liao, Z. J. Luo, and T. J. Cui, “Adaptively
    smart wireless power transfer using 2-bit programmable metasurface,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8524–8534, Aug. 2022.

    [25] G. Lan, M. F. Imani, Z. Liu, J. Manjarrés, W. Hu, A. S. Lan, D. R. Smith, and M. Gorlatova, “Metasense: Boosting RF sensing accuracy using dynamic metasurface antenna,” IEEE Internet Things J., vol. 8, no. 18, pp. 14 110–14 126, Mar. 2021.

    [26] T. Sleasman, M. F. Imani, W. Xu, J. Hunt, T. Driscoll, M. S. Reynolds, and D. R. Smith,“Waveguide-fed tunable metamaterial element for dynamic apertures,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 606–609, Jul. 2016.

    [27] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.: Cambridge, Univ. Press, 2004.

    [28] J.-C. Chen, “Low-PAPR precoding design for massive multiuser MIMO systems via riemannian manifold optimization,” IEEE Commun. Lett., vol. 21, no. 4, pp. 945–948, Jan. 2017.

    [29] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Berlin, Germany: Springer-Verlag, 2004.

    [30] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wirel. Commun., vol. 13, no. 3, pp. 1499–1513, Jan. 2014.

    [31] X. Gao, L. Dai, S. Han, C.-L. I, and R. W. Heath, “Energy-efficient hybrid analog and digital precoding for mmwave MIMO systems with large antenna arrays,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 998–1009, Mar. 2016.

    [32] P. Zhang, B. Yang, C. Yi, H. Wang, and X. You, “Measurement-based 5G millimeterwave propagation characterization in vegetated suburban macrocell environments,”IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5556–5567, Feb. 2020.

    [33] R. J. Williams, P. Ramírez-Espinosa, J. Yuan, and E. de Carvalho “Electromagnetic based communication model for dynamic metasurface antennas,” IEEE Trans. Wirel. Commun., vol. 21, no. 10, pp. 8616–8630, Apr. 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE