簡易檢索 / 詳目顯示

研究生: 曹靖婕
Tsao, Ching-Chieh
論文名稱: 以時間對齊鬆弛策略改善深度學習在領域適應的應用
Unlocking Domain Adaptation through Relaxation of Temporal Alignment
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 89
中文關鍵詞: 領域適應非監督式時域對齊時序資料頻域
外文關鍵詞: Domain Adaptation, Unsupervised Learning, Temporal Alignment, Time Series, Frequency Domain
ORCID: 0009-0008-6049-5195
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i Abstract iii 誌謝 vi Contents viii List of Tables xi List of Figures xiii 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Research Objectives 3 1.4 Thesis Organization 4 2 Literature Review 5 2.1 Characteristics and Applications of Time Series 5 2.1.1 Time-series characteristics 5 2.1.2 Characteristics of time series in frequency domain 6 2.1.3 Applications of time series 8 2.2 Cross-Domain Learning Approaches 8 2.2.1 Transfer learning 9 2.2.2 Domain Generalization (DG) 10 2.2.3 Domain Adaptation (DA) 11 2.2.4 Unsupervised Domain Adaptation (UDA) 12 2.2.5 Time-series UDA 13 2.3 Summary 14 3 Unlocking Domain Adaptation through Relaxation of Temporal Alignment 16 3.1 Overview 16 3.1.1 Vector Quantised-Variational AutoEncoder (VQ-VAE) 16 3.1.2 Self-supervised Reconstruction Learning 17 3.2 Problem Formulations for Time Series UDA 18 3.3 Dual Stream Encoder 20 3.4 Hierarchical Embedding Table (HET) 20 3.5 Summary 22 4 Advanced Techniques for Temporal and Spectral Feature Extraction 23 4.1 Nearest Neighbor Search Algorithm 23 4.2 Voting Mechanism 25 4.3 Objective Functions 26 4.3.1 Reconstruction Loss 26 4.3.2 Feature-embedding Consistency Loss 27 4.3.3 Dissimilarity Loss 28 4.3.4 Comprehensive Overview of the Loss Function 29 4.4 Summary 29 5 Experiments 33 5.1 Experimental Setting 33 5.1.1 UDA Benchmarks 33 5.1.2 Domain Generalization task 36 5.2 Main Results 37 5.2.1 Benchmark for UDA 37 5.2.2 Benchmark for Domain Generalization 38 5.3 Ablation Study 39 5.4 T-SNE Visualization 41 5.5 Hyperparameter Optimization 44 5.6 Clinical Task: IDH Prediction 44 5.7 Summary 45 6 Discussion 58 6.1 Explaining Methodological Outperformance 58 6.2 Classifier-free is efficient or not 59 6.3 Comparison of Multi-prototype Classifier to HET 59 6.4 How the integration of presumed domain-invariant properties in the frequency domain is achieved? 60 6.5 Will the spectral block be frozen to give better results? 60 6.6 Computation Analysis 62 6.6.1 Size of the hierarchical embedding table 62 6.6.2 Number of classification categories 63 6.7 Summary 64 7 Conclusion and Future Works 65 7.1 Conclusion 65 7.2 Future Works 66 References 68

    [1] M. Ragab, E. Eldele, W. L. Tan, C. S. Foo, Z. Chen, M. Wu, and X. Li. Adatime: A benchmarking suite for domain adaptation on time series data, 2023.
    [2] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural information processing systems, 30, 2017.
    [3] Andrew S Levey, Lesley A Stevens, Christopher H Schmid, Yaping Zhang, Alejandro F Castro III, Harold I Feldman, John W Kusek, Paul Eggers, Frederick Van Lente, Tom Greene, et al. A new equation to estimate glomerular filtration rate. Annals of internal medicine, 150(9):604–612, 2009.
    [4] H. He, O. Queen, T. Koker, C. Cuevas, T. Tsiligkaridis, and M. Zitnik. Domain adaptation for time series under feature and label shifts, 2023.
    [5] Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang, and Zhenjie Zhang. Time series domain adaptation via sparse associative structure alignment, 2021.
    [6] Ngai Hang Chan. Time series: applications to finance. John Wiley & Sons, 2004.
    [7] Ray Ball and Ross Watts. Some time series properties of accounting income. The Journal of Finance, 27(3):663–681, 1972.
    [8] H Lehman Li-wei, Ryan P Adams, Louis Mayaud, George B Moody, Atul Malho tra, Roger G Mark, and Shamim Nemati. A physiological time series dynamics-based approach to patient monitoring and outcome prediction. IEEE journal of biomedical and health informatics, 19(3):1068–1076, 2014.
    [9] Vasileios Lampos, Maimuna S Majumder, Elad Yom-Tov, Michael Edelstein, Si mon Moura, Yohhei Hamada, Molebogeng X Rangaka, Rachel A McKendry, and Ingemar J Cox. Tracking covid-19 using online search. NPJ digital medicine, 4(1):17, 2021.
    [10] Olufemi Olominu and Abiodun A Sulaimon. Application of time series analysis to predict reservoir production performance. In SPE Nigeria Annual International Conference and Exhibition, pages SPE–172395. Society of Petroleum Engineers, 2014.
    [11] Hadi Hajmohammadi and Benjamin Heydecker. Multivariate time series modelling for urban air quality. Urban Climate, 37:100834, 2021.
    [12] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of Research on Ma chine Learning Applications and Trends: Algorithms, Methods, and Techniques, pages 242–264. IGI Global, 2010.
    [13] Jose G. Moreno-Torres, Teresa Raeder, Rosana Alaiz-Rodr´ıguez, Nitesh V. Chawla, and Francisco Herrera. A unifying view on dataset shift in classifica tion. Pattern Recognition, 45:521–530, 2012.
    [14] Uday Kamath, Jingjing Liu, and John Whitaker. Transfer learning: Domain adaptation. In Deep Learning for NLP and Speech Recognition, pages 495–535. Springer, 2019.
    [15] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance, 2014.
    [16] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation, 2016.
    [17] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation, 2018.
    [18] Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu Jin, and Xian-Sheng Hua. Homm: Higher-order moment matching for unsupervised domain adaptation, 2020.
    [19] Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan. On minimum discrepancy estimation for deep domain adap tation. In Domain Adaptation for Visual Understanding, pages 81–94. 2020.
    [20] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, et al. Domain-adversarial training of neural networks, 2016.
    [21] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial domain adaptation, 2018.
    [22] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain adaptation, 2018.
    [23] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network for unsupervised domain adaptation, 2019.
    [24] Ankit Singh. Clda: Contrastive learning for semi-supervised domain adaptation, 2021.
    [25] Y. Zhang, Z. Wang, J. Li, J. Zhuang, and Z. Lin. Towards effective instance discrimination: Contrastive loss for unsupervised domain adaptation, 2023.
    [26] S. Purushotham, Wilka Carvalho, Tanachat Nilanon, and Yan Liu. Variational recurrent adversarial deep domain adaptation, 2017.
    [27] Garrett Wilson, Janardhan Rao Doppa, and Diane Joyce Cook. Multi-source deep domain adaptation with weak supervision for time-series sensor data, 2020.
    [28] Qiao Liu and Hui Xue. Adversarial spectral kernel matching for unsupervised time series domain adaptation, 8 2021.
    [29] Felix Ott, David Rugamer, Lucas Heublein, Bernd Bischl, and Christopher Mutschler. Domain adaptation for time series classification to mitigate covari ate shift, 2022.
    [30] Xiaoyong Jin, Youngsuk Park, Danielle Maddix, Hao Wang, and Yuyang Wang. Domain adaptation for time series forecasting via attention sharing, 17–23 Jul 2022.
    [31] Yilmazcan Ozyurt, Stefan Feuerriegel, and Ce Zhang. Contrastive learning for unsupervised domain adaptation of time series, 2022.
    [32] E. Eldele, M. Ragab, Z. Chen, M. Wu, C. K. Kwoh, and X. Li. Contrastive domain adaptation for time-series via temporal mixup, 2023.
    [33] G. Wilson, J. R. Doppa, and D. J. Cook. Calda: Improving multi-source time series domain adaptation with contrastive adversarial learning, 2023.
    [34] A. Van Den Oord and O. Vinyals. Neural discrete representation learning, 2017.
    [35] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. A public domain dataset for human activity recognition using smart phones, 2013.
    [36] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen. Smart devices are different: Assessing and mitigating mobile sensing hetero geneities for activity recognition, 2015.
    [37] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. Activity recognition using cell phone accelerometers, 2011.
    [38] Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Pla men Ch. Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung Kang Peng, and H. Eugene Stanley. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals, 2000.
    [39] Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data driven classification, 2016.
    [40] X. Qin, J. Wang, S. Ma, W. Lu, Y. Zhu, X. Xie, and Y. Chen. Generalizable low-resource activity recognition with diverse and discriminative representation learning, 2023.
    [41] W. Lu, J. Wang, X. Sun, Y. Chen, and X. Xie. Out-of-distribution representation learning for time series classification, September 2022.
    [42] Billur Barshan and Murat Cihan Yuksek. Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units, 2014.
    [43] Vladimir Vapnik. Principles of risk minimization for learning theory, 1992.
    [44] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang. Adversarial domain adaptation with domain mixup, 2020.
    [45] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to generalize: Meta-learning for domain generalization, 2018.
    [46] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging im proves cross-domain generalization, 2020.
    [47] Giambattista Parascandolo, Alexander Neitz, Antonio Orvieto, Luigi Gresele, and Bernhard Sch¨olkopf. Learning explanations that are hard to vary, 2021.
    [48] Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel Synnaeve. Gradient matching for domain generalization, 2022.
    [49] 應伶軒. 應用時間感知注意力網路進行透析中低血壓的個人化預測. 國立成功大 學碩士論文, 2023.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE