簡易檢索 / 詳目顯示

研究生: 徐文君
Shiu, Wen-Jiun
論文名稱: 以CGMD探討奈米壓痕下微觀銅結構的機械性質和力學行為
Study on mechanical properties and behaviors of Cu nanostructure under nanoindentation by Coarse Grain Molecular Dynamic (CGMD)
指導教授: 陳鐵城
Chen, Tei-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 138
中文關鍵詞: CGMD分子動力學奈米壓痕多重尺度
外文關鍵詞: CGMD, Molecular Dynamics, multi-scale, nanoindentation
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Coarse-Grained Molecular Dynamics(CGMD)法的精髓在於能以較少的節點數來取代多數的原子做運算,對於多重尺度(Multi-scale)的模擬,在能保持與分子動力學(Molecular Dynamics, MD)具有相似的模擬結果前提下,靈活地對系統做模擬尺度的變換,有效的降低模擬時間。本文將CGMD法應用於奈米壓痕(Nanoindentation)上,探討在不同效應下微觀結構的力學行為,並將其結果與MD相比較。 此法簡化粒子數的方式,是源於有限元素法(FEM)的權重函數(Weighting function)概念,而運動方程式的推導是由分子動力學經統計力學(Statistical mechanics)處理所求得,模擬不同尺度時則對其勢能函數做修正,因此不同尺度下,其理論基礎仍相同,然而在跨尺度模擬介面時所產生的不連續問題,也有其應對方法。 本研究探討CGMD法在不同溫度、速度、尺寸及材料效應下,透過奈米壓痕的(1)3D結構圖、(2)力量與深度關係圖、(3)基板材料之硬度與楊氏模數值、(4)缺陷結構圖的分析比較後,可發現CGMD模擬結果與MD會有相當接近的趨勢。模擬中並透過時間的監控,得到CGMD模擬時間約為MD的1/3,當模擬的尺寸越大時,兩者間時間的差異將會越來越明顯。

    The significance of Coarse-Grained Molecular Dynamics (CGMD) is mainly established on its flexibility to perform the numerical computation with fewer nodes instead of all atoms. In multi-scale simulation, CGMD method can not only vary its scale to describe the system more flexible but also effectively save more computational cost than Molecular Dynamics (MD) on the promise that the simulation result can maintain as accurate as MD. This study applies CGMD to investigate the mechanical behavior of material in micro-scale under nanoindentation. Moreover, the results of CGMD are compared with MD. The concept of CGMD is to utilize the weighting function of Finite Element Method (FEM) to reduce the nodes. The equations of motion are also derived from Molecular Dynamics through statistical mechanics. Moreover, we modify and obtain the potential functions suitable for different scales. Therefore, the simulated systems are based on the same theories and the problems of seamless coupling between different scales can be easily solved. This work applies CGMD to nanoindentation process and investigates the effects of the temperature, the velocity, the size, and the material upon the results of (1) 3-D deformation configuration, (2) force-displacement curve, (3) substrate material’s hardness and Young’s modulus, as well as (4) the defects of structure. It can be concluded that CGMD can obtain the results as accurate as MD does. The computational time of CGMD takes only one-third as long as MD. Moreover, the larger the simulation system, the higher the efficiency of CGMD .

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明 xiii 第一章 緒論 1 1-1 前言 1 1-2 分子動力學文獻回顧 4 1-3 CGMD文獻回顧 5 1-4 奈米壓痕及缺陷現象文獻回顧 7 1-5 研究動機 9 1-6 本文架構 9 第二章 分子動力學理論 11 2-1 分子動力學之基本假設 11 2-2 分子動力學基本理論 11 2-3 系綜觀念 13 2-4 分子間作用力 15 2-5 勢能函數 16 2-6 無因次化 21 2-7 初始位置之決定 22 2-8 初始速度之決定 23 2-9 運動方程式 25 2-10 Cute-off截斷半徑與Verlet鄰近表列法 29 2-11 週期邊界條件 34 2-12 最小映像法則 35 2-13 原子級應力 37 第三章 物理模型與理論架構 38 3-1 CGMD Hamiltonian 38 3-2 勢能基底轉換用泰勒展開逼進法 40 3-3 修正CGMD勢能函數 43 3-4 CGMD應力表示式 51 3-5 奈米壓痕分析理論 55 3-6 監控平衡狀態 61 3-7 缺陷理論架構 64 第四章 模擬結果與分析討論 69 4-1 模擬分析流程 69 4-2 奈米壓痕變形過程與機制 73 4-3 CGMD與MD模擬結果之分析比較 81 4-4 探討CGMD奈米壓痕的缺陷現象 87 4-5 探討不同壓痕基板面下之分析比較 92 4-6 探討不同探針角度之模擬分析 99 4-7 探討CGMD在不同溫度下之機械性質 105 4-8 探討CGMD壓痕器的速度效應 107 4-9 探討CGMD尺寸效應的影響 112 4-10 探討CGMD應用在不同的材料上 120 4-11 MD與CGMD運算時間分析比較 126 第五章 結論與未來展望 129 5-1 結論 129 5-2 未來展望 131 參考文獻 132 自述 138

    [1] J. N. Israelachvili, "Intermolecular and Surface Forces- with Applications to Colloidal and Biological Systems", Academic press, Vol. No. pp. 1985.
    [2] R. E. Rudd and J. Q. Broughton, "Coarse-grained Molecular Dynamics and Atomic Limit of Finite Elements", Phys. Rev. B, Vol. 58, No. 10, pp. R5893-R5896, 1998.
    [3] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", J. Chem. Phys., Vol. 18, No. 6, pp. 817-829, 1950.
    [4] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics. I. General Method", J. Chem. Phys., Vol. 31, No. 2, pp. 459-466, 1959.
    [5] B. J. Alder and T. E. Wainwright, " Decay of the Velocity Autocorrelation Function", Phys. Rev. A, Vol. 1, No. 1, pp. 18-21, 1970.
    [6] G. Ciccotti and W. G. Hover, "Molecular Dynamics Simulation of Statistical Mechanics System,Amsterdam", North Holland, Vol. No. pp. 1986.
    [7] M. P. Allen and D. J. Tildesley, "Compuetr Simulation of Liquids", Oxford, Claredon, Vol. No. pp. 1987.
    [8] J. M. Hailie, "Molecular Dynamics Simulation Elementary Method", New York : Wiley, Vol. No. pp. 1993.
    [9] L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol. 159, No. 1, pp. 98-103, 1967.
    [10] B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations", J. Comput. Phys., Vol. 13, No. 3, pp. 430-432, 1975.
    [11] D. C. Rapaport, "Molecular-Dynamics Study of Rayleigh-Bénard Convection", Layered cell link, Vol. 60, No. 24, pp. 2480-2483, 1988.
    [12] G. S. Grest, B. Dünweg, and K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles", Comput. Phys. Commun., Vol. 55, No. 3, pp. 269-285, 1989.
    [13] E. B. Tadmor and R. Phillips, "Mixed Atomistic and Continuum Models of Deformation in Solids", Langmuir, Vol. 12, No. 19, pp. 4529-4534, 1996.
    [14] J. Q. Broughton, F. F. Abraham, N. Bernstein, and E. Kaxiras, "Concurrent coupling of length scales: Methodology and application", Phys. Rev. B, Vol. 60, No. 4, pp. 2391-2403, 1999.
    [15] J. Knap and M. Ortiz, "An analysis of the quasicontinuum method", J. Mech. Phys. Solids, Vol. 49, No. 9, pp. 1899-1923, 2001.
    [16] E. Lidorikis, M. E. Bachlechner, R. K. Kalia, A. Nakano, P. Vashishta, and G. Z. Voyiadjis, "Coupling Length Scales for Multiscale Atomistics-Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si3N4 Nanopixels", Phys. Rev. Lett., Vol. 87, No. 8, pp. 086104-1-086104-4, 2001.
    [17] S. Curtarolo and G. Ceder, "Dynamics of an Inhomogeneously Coarse Grained Multiscale System", Phys. Rev. Lett., Vol. 88, No. 25, pp. 255504-1-255504-4, 2002.
    [18] D. J. Diestler, "Coarse-grained descriptions of multiple scale processes in solid systems", Phys. Rev. B, Vol. 66, No. 18, pp. 184104-1-184104-7, 2002.
    [19] G. J. Wagner, "Coupling of atomistic and continuum simulations using a bridging scale decomposition", J. Comput. Phys., Vol. 190, No. 1, pp. 249-274, 2003.
    [20] X. Li and W. E, "Multiscale modeling of the dynamics of solids at finite temperature", J. Mech. Phys. Solids, Vol. 53, No. 7, pp. 1650-1685, 2005.
    [21] L. M. Dupuy, E. B. Tadmor, R. E. Miller, and R. Phillips, "Finite Temperature Quasicontinuum: Molecular Dynamics without All the Atoms", Phys. Rev. Lett., Vol. 95, No. 6, pp. 060202-1-060202-4, 2005.
    [22] P. A. Klein and J. A. Zimmerman, "Coupled atomistic–continuum simulations using arbitrary overlapping domains", J. Comput. Phys., Vol. 213, No. 1, pp. 86-116, 2006.
    [23] E. J. Smiley, Z. Postawa, I. A. Wojciechowski, N. Winograd, and B. J. Garrison, "Coarse-grained molecular dynamics studies of cluster-bombarded benzene crystals", Appl. Surf. Sci., Vol. 252, No. 19, pp. 6436-6439, 2006.
    [24] C.-D. Wu and J.-F. Lin, "Multiscale particle dynamics in nanoimprint process", Appl. Phys. A, Vol. 91, No. 2, pp. 273-279, 2008.
    [25] H. Hertz, "Über die Berührung fester elastischer Körper", Journal für die reine und angewandte Mathematik, Vol. 92, No. pp. 156-171, 1881.
    [26] I. N. Sneddon, "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile", Int. J. Eng. Sci., Vol. 3, No. 1, pp. 47-57, 1965.
    [27] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992.
    [28] J. S. Field and M. V. Swain, "A simple predictive model for spherical indentation", J. Mater. Res., Vol. 8, No. 2, pp. 297-306, 1993.
    [29] J. Shimizu, H. Eda, M. Yoritsune, and E. Ohmura, "Molecular dynamics simulation of friction on the atomic scale", Nanotechnology, Vol. 9, No. 2, pp. 118-123, 1998.
    [30] F. N. Dzegilenko, D. Srivastava, and S. Saini, "Nanoscale etching and indentation of a silicon(001) surface with carbon nanotube tips", Nanotechnology, Vol. 11, No. 3, pp. 253-257, 1999.
    [31] C. Tromas, J. Colin, C. Coupeau, J. C. Girard, J. Woirgard, and J. Grilhé, "Pop-in phenomenon during nanoindentation in MgO", Eur. Phys. J. Appl. Phys., Vol. 8, No. 2, pp. 123-128, 1999.
    [32] C. Tromas, J. C. Girard, V. Audurier, and J. Woirgard, "Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy", J. Mater. Sci., Vol. 34, No. 21, pp. 5337-5342, 1999.
    [33] Y. Gaillard, C. Tromas, and J. Woirgard, "Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching", Acta Mater., Vol. 51, No. 4, pp. 1059-1065, 2003.
    [34] E. T. Lilleodden, J. A. Zimmerman, S. M. Foiles, and W. D. Nix, "Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation", J. Mech. Phys. Solids, Vol. 51, No. 5, pp. 901-920, 2003.
    [35] H. Y. Liang, C. H. Woo, H. Huang, A. H. W. Ngan, and T. X. Yu, "Dislocation nucleation in the initial stage during nanoindentation", Philos. Mag., Vol. 83, No. 31-34, pp. 3609-3622, 2003.
    [36] D. Saraev and R. E. Miller, "Atomistic simulation of nanoindentation into copper multilayers", Modell. Simul. Mater. Sci. Eng., Vol. 13, No. 7, pp. 1089-1099, 2005.
    [37] D. E. Kim and S. I. Oh, "Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation", Nanotechnology, Vol. 17, No. 9, pp. 2259-2265, 2006.
    [38] Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, and Y.-S. Lai, "Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon", Appl. Surf. Sci., Vol. 254, No. 5, pp. 1415-1422, 2007.
    [39] T. Tsuru and Y. Shibutani, "Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu", Phys. Rev. B: Condens. Matter, Vol. 75, No. 3, pp. 035415-1-035415-6, 2007.
    [40] R. J. Arsenault and J. R. Beeler, "Computer simulation in Material Science, Asm international", USA, Vol. No. pp. 1988.
    [41] J. E. Jones, "The determination of molecular fields I. From the variation of the viscosity of a gas with temperature", Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462, 1924.
    [42] L. A. Girifalco and V. G. Weizer, "Application of the Morse Potential Function to Cubic Metals", Phys. Rev. , Vol. 114, No. 3, pp. 687-690, 1959.
    [43] S. M. Foiles, M. I. Baskes, and M. S. Daw, "Embedded-Atom Method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys", Phys. Rev. B, Vol. 33, No. 12, pp. 7983-7991, 1986.
    [44] M. I. Baskes, "Modified embedded-atom potentials for cubic materials and impurities", Phys. Rev. B, Vol. 46, No. 5, pp. 2727-2742, 1992.
    [45] M. S. Daw, S. M. Faoiles, and M. I. Baskes, "The embedded-atom method: a review of theory and applications", Material Science Report., Vol. 9, No. pp. 251-310, 1993.
    [46] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
    [47] J. Tersoff, "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Phys. Rev. B: Condens. Matter, Vol. 39, No. 8, pp. 5566-5568, 1989.
    [48] 陳道隆, "量子系統之混合表象與高度應變率對奈米金線力學行為之影響", 國立成功大學, 博士論文, pp. 61-66, 2005.
    [49] 李泳達, "以分子動力學探討奈米探管儲氫與流動之特性", 國立中正大學, 碩士論文, pp. 26-28, 2004.
    [50] J. M. Hailie, "Molecular Dynamics Simulation Elementary Methods", New York: John Wiley & Sons. Inc., Vol. No. pp. 1993.
    [51] 林彥宏, "奈米壓痕之表面層效應與結構變化探討", 國立中正大學, 碩士論文, 2005.
    [52] T. Iwaki, "Molecular Dynamic Study on Stress-Strain in Very Thin Film", JSME Int. J. Ser. A, Vol. 39, No. 3, pp. 346-353, 1988.
    [53] 陳冠維, "掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微奈米機械性質檢測", 國立成功大學, 碩士論文, 2003.
    [54] R. B. King, "Elastic analysis of some punch problems for a layered medium", Int. J. Solids Struct., Vol. 23, No. 12, pp. 1657-1664, 1987.
    [55] J. B. Pethicai, R. Hutchings, and W. C. Oliver, "Hardness measurement at penetration depths as small as 20 nm", Philos. Mag. A, Vol. 48, No. 4, pp. 593 – 606, 1983.
    [56] J. Li, K. J. V. Vliet, T. Zhu, and S. Y. a. S. Suresh, "Atomistic mechanisms governing elastic limit and incipient plasticity in crystals", Nature, Vol. 418, No. 6895, pp. 307-310, 2002.
    [57] 王恆杰, "修正勢能函數式CGMD在奈米壓痕的應用", 國立成功大學, 碩士論文, 2007.
    [58] T.-H. Fang, C.-I. Weng, and J.-G. Chang, "Molecular dynamics analysis of temperature effects on nanoindentation measurement", Mater. Sci. Eng., A, Vol. 357, No. 1-2, pp. 7-12, 2003.
    [59] "3C產業微/奈米及自動化精密檢測技術", 91年度技專校院發展學校重點特色專案補助計劃, 2002.
    [60] 吳書帆, "多重尺度CGMD在奈米壓痕的應用", 國立成功大學, 碩士論文, 2006.

    下載圖示 校內:2009-07-20公開
    校外:2011-07-20公開
    QR CODE