簡易檢索 / 詳目顯示

研究生: 胡皓翔
Hu, Hao-Xiang
論文名稱: 尺度相關之協合應力偶歸一板理論於微奈米板之靜態撓曲及自由振動分析
A Unified Size-Dependent Plate Theory for Static Bending and Free Vibration Analyses of Micro- and Nano-Scale Plates Based on the Consistent Couple Stress Theory
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 53
中文關鍵詞: 協合應力偶理論功能性材料微米板多層石墨烯板靜態撓曲振動
外文關鍵詞: Couple stress theory, Functionally graded material, Multilayered graphene sheets, Microscale plates, Static bending, Vibration
相關次數: 點閱:74下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基於協合應力偶理論(Consistent couple stress theory , CCST),發展各種剪切變形尺度相關板之歸一理論,用於對嵌入彈性介質中的簡支撐微、奈米板(Micro-/Nano-scale plates , MNSP)進行靜態撓曲及自由振動分析,其中尺度相關之古典板理論、一階剪力變形板理論、Reddy的優化剪力變形板理論以及正弦、指數和雙曲線剪力變形板理論,均可藉由將一特定之剪切變形厚度分佈函數代入歸一理論中獲得。文中亦將此歸一CCST板理論應用於嵌入彈性介質中的簡支撐功能性微米板(Functionally graded microscale plates , FGMP)和多層石墨烯板(Multilayered graphene sheets , MLGS)之靜態撓曲及自由振動分析,其中對材料尺度參數、長厚比及材料性質梯度因子對FGMP和MLGS之變形、應力及頻率參數的影響均有探討。結果顯示,材料尺度參數對FGMP、MLGS之靜態撓曲和自由振動的影響是顯著的。

    Based on the consistent couple stress theory (CCST), the authors develop a unified formulation of various shear deformation plate theories for static bending and free vibration analyses of simply-supported, micro-/nano-scale plates embedded in an elastic medium. The CCST-based classical plate theory (CPT), first-order shear deformation plate theory (SDPT), and Reddy’s refined SDPT, as well as the CCST-based sinusoidal, exponential, and hyperbolic SDPTs can be obtained by assigning specific through-thickness distributions of the shear deformations into the unified formulation, and they are thus included as special cases of the unified consistent couple stress plate theory. The unified CCST-based plate theory is applied to static bending and free vibration analyses of simply-supported, functionally graded microplates (FGMPs) and multilayered graphene sheets (MLGSs) embedded in an elastic medium. The material length scale parameter, aspect ratio, and shear deformation effects on the deformation, stress, and frequency parameters of FGMPs and MLGSs are investigated. It is shown that the solutions for the deformation, the in-plane stress, and the frequency parameters of the FGMPs/MLGSs obtained using the MCST and the CCST are almost identical to each other. The material length scale parameter effects on static bending and free vibration behaviors of the FGMP/MLGS are significant.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 IX 圖目錄 X 首字母縮寫表 XI 參數對照表 XII 第一章 緒論 1 第二章 理論公式 5 2.1 協合應力偶理論 5 2.2 凡德瓦爾力 5 2.3 運動學 6 2.4 本構方程式 9 2.5 歐拉-拉格朗日方程及邊界條件 10 2.6 應用 14 第三章 數值範例 18 3.1 FGMP之變形、應力及自由振動分析 18 3.2 嵌入式MLGS之自由振動分析 21 第四章 結論 24 第五章 參考資料 26 附錄A 31 附錄B 34

    Akgoz, B., Civalek, O., 2012. Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171.
    Alimirzaei, S., Mohammadimehr, M., Tounsi, A., 2019. Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling, and vibration solutions. Struct. Eng. Mech. 71, 485–502.
    Arash, B., Wang, Q., 2012. A review on the applications of nonlocal elastic models in the modeling of carbon nanotubes and graphenes. Compos. Mater. Sci. 51, 303–313.
    Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S., Tounsi, A., 2021. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patchs considering hygrothermal effect via an innovative plate theory. Eng. Comput.
    Asghar, S., Naeem, M.N., Hussain, M., Taj, M., Tounsi, A., 2020. Prediction and assessment of nonlocal natural frequencies of DWCNTs: vibration analysis. Comput. Concr. 25, 133–144.
    Balubaid, M., Tounsi, A., Dakhel, B., Mahmoud, S.R., 2019. Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory. Comput. Concr. 24, 579–586.
    Beni, Y.T., 2016. Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27, 2199–2215.
    Dehkordi, S.F., Beni, Y.T., 2017. Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory. Int. J. Mech. Sci. 128–129, 125–139.
    Ebrahimi, N., Beni, Y.T., 2016. Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory. Steel Compos. Struct. 22, 1301–1336.
    Eringen, A.C., 1968. Theory of micropolar elasticity. In: Liebowitz, H. (Ed.), Fracture. Academic Press, New York.
    Fakhrabadi, M.M.S., 2015. Size effects on nanomechanical behaviors of nanoelectronics devices based on consistent couple-stress theory. Int. J. Mech. Sci. 92, 146–153.
    Fakhrabadi, M.M.S., 2016. Prediction of small-scale effects on nonlinear dynamic behaviors of carbon nanotube-based nano-resonators using consistent couple stress theory. Compos. Part B 88, 26–35.
    Gao, X.L., Huang, J.X., Reddy, J.N., 2013. A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718.
    Hadi, A., Nejad, M.Z., Rastgoo, A., Hosseini, M., 2018. Buckling analysis of FGM Euler- Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory. Steel Compos. Struct. 26, 663–672.
    Hadjesfandiari, A.R., 2013. Size-dependent piezoelectricity. J. Solids Struct. 50, 2781–2791.
    Hadjesfandiari, A.R., 2014. Size-dependent thermoelasticity. Lat. Am. J. Solid. Struct. 11, 1679–1708.
    Hadjesfandiari, A.R., Dargush, G.F., 2011. Couple stress theory for solids. J. Solids Struct. 48, 2496–2510.
    Hadjesfandiari, A.R., Dargush, G.F., 2013. Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solid Struct. 50, 1253–1265.
    He, X.Q., Kitipornchai, S., Liew, K.M., 2005. Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16, 2086–2091.
    Huang, X., Hao, H., Oslub, K., Habibi, M., Tounsi, A., 2021. Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem. Eng. Comput.
    Jung, W.Y., Han, S.C., 2015. Static and eigenvalue problems of sigmoid functionally graded materials (S-FGM) micro-scale plates using the modified couple stress theory. Appl. Math. Model. 39, 3506–3524.
    Kheibari, F., Beni, Y.T., 2017. Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model. Mater. Des. 114, 572–583.
    Khorshidi, M.A., 2018. The material length scale parameter used in couple stress theories is not a material constant. Int. J. Eng. Sci. 133, 15–25.
    Kim, J., Reddy, J.N., 2013. Analytical solutions for bending, vibration, and buckling of FGM plates using a couple stress-based third-order theory. Compos. Struct. 103, 86–98.
    Kim, J., Zur, K.K., Reddy, J.N., 2019. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888.
    Koiter, W.T., 1964. Couple stresses in the theory of elasticity, I and II. Phil. Trans. Roy. Soc. Lond. B 67, 17–44.
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P., 2003. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solid. 51, 1477–1508.
    Li, Z., He, Y., Lei, J., Guo, S., Liu, D., Wang, L., 2018. A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205.
    Ma, H.M., Gao, X.L., Reddy, J.N., 2011. A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235.
    Matouk, H., Bousahla, H.H., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A., Mahmoud, S.R., Tounsi, A., Benrahou, K.H., 2021. Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory. Adv. Nano Res. 8, 293–305.
    Mindlin, R.D., Tiersten, H.F., 1962. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–488.
    Nejad, M.Z., Hadi, A., Farajpour, A., 2017. Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials. Struct. Eng. Mech. 63, 161–169.
    Reddy, J.N., 2008. An Introduction to Continuum Mechanics with Applications. Cambridge University Press, New York.
    Reddy, J.N., 2011. Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solid. 59, 2382–2399.
    Reddy, J.N., 2013. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, New York.
    Reddy, J.N., Kim, J., 2012. A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94, 1128–1143.
    Rouabhia, A., Chikh, A., Bousahla, A.A., Bourada, F., Heireche, H., Tounsi, A., Kouider Halim, B., Tounsi, A., Al-Zahrani, M.M., 2020. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory. Steel Compos. Struct. 37, 695–709.
    Shaat, M., Ghavanloo, E., Fazelzadeh, S.A., 2020. Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587.
    Shafiei, Z., Sarrami-Foroushani, S., Azhari, F., Azhari, M., 2020. Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets. Aero. Sci. Technol. 98, 105652.
    Soedel, W., 1993. Vibrations of Shells and Plates. Marcel Dekker Inc., New York.
    Soleimani-Javid, Z., Arshid, E., Khorasani, M., Amir, S., Tounsi, A., 2021. Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions. Adv. Nano Res. 10, 449–460.
    Thai, H.T., Choi, D.H., 2013. Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos. Struct. 95, 142–153.
    Thai, H.T., Kim, S.E., 2013. A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. Part B 45, 1636–1645.
    Thai, H.T., Vo, T.P., 2013. A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos. Struct. 96, 376–383.
    Toupin, R.A., 1962. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414. Van Do, V.N., Jeon, J.T., Lee, C.H., 2020. Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory. Mech. Mater. 142, 103307.
    Wu, C.P., Yu, J.J., 2019. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory. Arch. Appl. Mech. 89, 1761–1792.
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P., 2002. Couple stress-based strain gradient theory for elasticity. Int. J. Solid Struct. 39, 2731–2743.
    Yin, L., Qian, Q., Wang, L., Xia, W., 2010. Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23, 386–393.
    Yuan, Y., Zhao, K., Zhao, Y., Sahmani, S., Safaei, B., 2020. Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech. Mater. 148, 103507.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE