簡易檢索 / 詳目顯示

研究生: 侯緯鳴
Hou, Wei-Ming
論文名稱: 串級式相位移長週期波紋與相位鈮酸鋰波導光柵之相關探討
Long-Period Corrugation and Phase Gratings based on a Cascade of Phase-Shifted Waveguides on Lithium Niobate
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 光波導質子交換長週期光柵光波導濾波器相位移光柵
外文關鍵詞: optical waveguides, proton exchange, long-period grating, waveguide filters, phase shift grating
相關次數: 點閱:159下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在光通訊的領域中,為了達到更佳的雜訊抑制,長週期光纖光柵(Long-period fiber grating, LPFG)已被廣泛研究和應用在光纖通訊系統上。但是光纖在元件的實現上會有幾何形狀和材料選擇上的限制,為了要消除光纖在製作上的限制和實現元件積體化,長週期波導光柵(Long period waveguide grating, LPWG)已被提出研究和實現。由於傳統的光柵濾波器只可工作在單一的波長,無法應用於過濾多個波長的特殊頻譜需求,因此進而促使像高密度分波多工系統(DWDM)的問世。但此類元件多半由兩個或兩個以上的獨立濾波器去達到其工作需求,在後續的元件積體化整合上將會變得更加困難,但使用相移式(phase-shift)長週期光柵去達到兩個甚至以上的抑制頻帶則可滿足此需求。
    在此論文中,我們利用二次質子交換(two-step proton-exchange)與三次質子交換(three-step proton-exchange)技術成功地在LiNbO3基板上製作出長週期波導光柵元件。其元件光柵週期為Λ=50 μm。第一次質子交換主要是製作平面波導披覆層,其溫度控制在280°C,時間為4個小時,熱退火溫度為400°C,時間為120分鐘,而第二次質子交換法主要是製作波導層,其溫度控制在280°C,時間為120分鐘,在此我們利用兩種不同的方式製作光柵。其一光柵製作是利用Pri-500 Ǻ光阻,經由標準的黃光微影製作而成。其二光柵是利用硬脂酸,經由質子交換技術製作而成。其溫度控制在280°C,時間為30 min。在後續的量測結果顯示此相位光柵元件光波長抑制對比度(dip contrast)最大可達到19.73dB,半高全寬(FWHM)約為2.34nm,共振波長為1563.68nm,其模擬與實驗結果都相符合。
    接著利用相位移長週期光柵理論設計出2、3、4、5等4種不同區段(section)的相位移長週期光柵,而隨著區段數M的增加,其兩個主要抑制頻帶之間的旁瓣(sidelobes)數為M2。而隨著區段數M的增加,兩個主共振頻帶,會沿著中心波長的兩側向外延伸。

    In this thesis, we have fabricated a long-period grating on lithium niobate (LiNbO3) with a channel waveguide buried in slab cladding using a two-step proton exchange. The optical gratings are produced by two different techniques. The first method involves the grating formed on the waveguide surface using PRI-500Ǻphotoresist patterned by a standard photolithography. Additionally, the phase grating is also produced with a proton-exchange technique adopted. The phase-shifted long period gratings with a finite number (M) of sections cascaded together are also designed and fabricated.

    中文摘要 I 英文摘要 III 致謝 XII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 序論 1 1.1 光通訊簡介 1 1.2 光學積體電路 4 1.3 論文架構 6 參考文獻................7 第二章 長週期光柵 8 2.1 導論 8 2.2 長週期光纖光柵(Long-period fiber grating, LPFG) 9 2.3 長週期波導光柵(Long-period waveguide grating) 11 2.4 相位移長週期光纖光柵 14 參考文獻........................18 第三章 鈮酸鋰光波導 23 3.1 導論 23 3.2 光波導製作 25 3.2.1 質子交換法 25 3.2.2 熱退火式質子交換(APE) 29 3.2.3 金屬擴散法 31 3.2.4 鎂誘鋰外擴散法 33 參考文獻................35 第四章 長週期以及長週期相位移光柵之元件設計與製作 38 4.1 導論 38 4.1.1 菱鏡耦合技術 38 4.2 結構設計 41 4.3 元件製作流程 44 4.3.1 基板清洗 46 4.3.2 質子交換光波導 47 4.3.3 光阻光柵與相位光柵定義於波導 48 4.3.4 拋光以及研磨 51 4.3.5 光場量測 52 4.4 穿透頻譜(Transmission spectrum)量測分析 55 4.5 長週期光柵之頻譜分析 56 4.5.1 相位移長週期光柵之頻譜模擬 62 4.5.2 兩個區段的相位移長週期光柵 64 4.5.3 三個區段的相位移長週期光柵 70 4.5.4 四個區段的相位移長週期光柵 76 4.5.5 五個區段的相位移長週期光柵 82 參考文獻................................88 第五章 結論與未來進展 89 5.1 結論與未來進展 89 參考文獻................91

    第一章
    [1]S.E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
    [2]F. Kane and Robert R.Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo.Tech. Lett., vol. 7, no.5, pp.535-537, 1995.
    [3]Gregory H. Olsen, “InGaAsP laser diodes,” Opt. Eng., vol. 20, pp. 440-445, 1981.
    [4]Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol. 23, pp.45, 1973.
    [5]Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., vol. 27, pp.497-506, 1979.
    [6]H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits,” McGraw-Hill Book Company, 1989.
    [7]R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,” Electron. Lett., vol. 21, 1985.
    [8]S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,” Electron. Lett., vol. 21, 1985.
    [9]C.W. Pitt, “Sputtered glass optical waveguides,” Electron. Lett., vol. 9, pp.401-403, 1973.
    [10]G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electron. Lett., vol. 14, pp.132-134, 1978.
    第二章
    [1]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol., Vol. 14, pp. 58-65, Apr. 1996.
    [2]V. Bhatia, D. Campbell, and R. O. Claus, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett., Vol. 22, pp. 648-650, May 1997.
    [3]M. N. Ng, Z. Chen, and K. S. Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., Vol. 14, pp. 361-362, Mar. 2002.
    [4]A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am., Vol. 62, pp. 1267-1972, Nov. 1972.
    [5]D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
    [6]S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair,” IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, Jan. 2005.
    [7]K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings,” Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
    [8]X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
    [9]D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
    [10]M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun., vol. 208, pp. 321-327, Jul. 2002.
    [11]S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
    [12]M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [13]P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
    [14]J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings,” Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
    [15]M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks,” Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
    [16]X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
    [17]A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs,” IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
    [18]C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng., vol. 43, pp.342-345, Feb. 2004.
    [19]K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Aug. 2005.
    [20]V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
    [21]Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
    [22]K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
    [23]K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
    [24]Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, 241115, June 2005.
    [25]D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
    [26]D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description,” Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007.
    [27]K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
    [28]Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, 241115, June 2005.
    [29]X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
    [30]M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
    [31]M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Comm., vol. 208, pp. 321-327, Jul. 2002.
    [32]H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett., vol.10, no. 11,Nov. 1998
    [33]Florence Y.M. Chan, K.S. Chiang, “Analysis of apodized phase-shifted long-period fiber grating,” Opt. Comm. vol. 244, pp. 233-243, 2005
    第三章
    [1] R.S.Weis and T.K.Gaylord, “Lithium Niobate : Summary of Physical Properties and Crystal Structure ,” Appl. Phys. Lett. ,Vol.37, PP. 171-203, 1985.
    [2] S.O.Kasap, “Optoelectronics and Photonics Principles and Practices, ”Prentice Hall.
    [3] S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Comm., vol. 17, pp. 332-335,1976
    [4] http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3%20Wafers.html.
    [5] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 ,1982.
    [6] K. Yamamoto, Tetsuo” Characteristics of pyrophosphoric acid PE inLiNbO3”, J. Appl. Phys. 70, 11, p6663, 1991.
    [7] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightwave Technol., vol. 11, no. 2, pp. 277-284, Feb. 1993.
    [8] E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid,” Electron. Lett., vol.26, pp. 81-82, 1990.
    [9] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE Trans. Photon. Technol. Lett., vol. 3, no. 11, pp. 1006-1008, Nov. 1991.
    [10] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides,” J. Opt. Comm., vol. 9 pp. 19-23, 1988.
    [11] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
    [12] Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange,” J. Lightwave Technol., vol. 18, pp. 562-567, 2000.
    [13] Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996.
    [14] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate” Appl. Opt. ,Vol. 35, No. 36 y 20 December 1996.
    [15] R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 ,1974.
    [16] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Appl. Opt., 30, p1085-1089 ,1991.
    [17] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada,“Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, p19-21 ,1975.
    [18] W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, p70-72 ,1978.
    [19] T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, p376-379 ,1977.
    [20] S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, p742-744 ,1977.
    [21] J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, p509-511 ,1981.
    [22] R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys .Lett., 33, p733-734 ,1978.
    [23] Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength,” Electron. Lett., vol. 32, no. 11, pp. 1003-1005, May 1996.
    [24] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang , “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996
    [25] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused
    LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978.
    第四章
    [1] R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Appl. Opt. Vol. 12, pp. 2901-2908, Apr. 1973.
    [2] C. J. Ma, “Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method,” National Cheng Kung University, Master thesis, 2010.
    [3] S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
    [4] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description,” Opt. Laser Technol., Vol. 39, pp. 1204-1213, Sept. 2007.
    [5] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett., Vol. 15, pp. 1094-1096, Aug. 2003.
    第五章
    [1] Wei Jin, Kin Seng Chiang and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching,” Opt. Lett. , Vol. 35, No. 4 , February 15, 2010.
    [2] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings,” IEEE Photon. Technol. Lett., Vol. 20, No. 14 July. 15, 2008.
    [3] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun, “Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide,” IEEE Photon. Technol. Lett., VOL. 22, NO. 18, SEPTEMBER 15, 2010
    [4] W. Jin, K. S. Chiang, and Q. Liu,“Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate,” Opt. Express, Vol. 16, No. 25, December 8, 2008.

    無法下載圖示 校內:2019-11-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE