| 研究生: |
侯緯鳴 Hou, Wei-Ming |
|---|---|
| 論文名稱: |
串級式相位移長週期波紋與相位鈮酸鋰波導光柵之相關探討 Long-Period Corrugation and Phase Gratings based on a Cascade of Phase-Shifted Waveguides on Lithium Niobate |
| 指導教授: |
莊文魁
Chuang, Ricky W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 光波導 、質子交換 、長週期光柵 、光波導濾波器 、相位移光柵 |
| 外文關鍵詞: | optical waveguides, proton exchange, long-period grating, waveguide filters, phase shift grating |
| 相關次數: | 點閱:159 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在光通訊的領域中,為了達到更佳的雜訊抑制,長週期光纖光柵(Long-period fiber grating, LPFG)已被廣泛研究和應用在光纖通訊系統上。但是光纖在元件的實現上會有幾何形狀和材料選擇上的限制,為了要消除光纖在製作上的限制和實現元件積體化,長週期波導光柵(Long period waveguide grating, LPWG)已被提出研究和實現。由於傳統的光柵濾波器只可工作在單一的波長,無法應用於過濾多個波長的特殊頻譜需求,因此進而促使像高密度分波多工系統(DWDM)的問世。但此類元件多半由兩個或兩個以上的獨立濾波器去達到其工作需求,在後續的元件積體化整合上將會變得更加困難,但使用相移式(phase-shift)長週期光柵去達到兩個甚至以上的抑制頻帶則可滿足此需求。
在此論文中,我們利用二次質子交換(two-step proton-exchange)與三次質子交換(three-step proton-exchange)技術成功地在LiNbO3基板上製作出長週期波導光柵元件。其元件光柵週期為Λ=50 μm。第一次質子交換主要是製作平面波導披覆層,其溫度控制在280°C,時間為4個小時,熱退火溫度為400°C,時間為120分鐘,而第二次質子交換法主要是製作波導層,其溫度控制在280°C,時間為120分鐘,在此我們利用兩種不同的方式製作光柵。其一光柵製作是利用Pri-500 Ǻ光阻,經由標準的黃光微影製作而成。其二光柵是利用硬脂酸,經由質子交換技術製作而成。其溫度控制在280°C,時間為30 min。在後續的量測結果顯示此相位光柵元件光波長抑制對比度(dip contrast)最大可達到19.73dB,半高全寬(FWHM)約為2.34nm,共振波長為1563.68nm,其模擬與實驗結果都相符合。
接著利用相位移長週期光柵理論設計出2、3、4、5等4種不同區段(section)的相位移長週期光柵,而隨著區段數M的增加,其兩個主要抑制頻帶之間的旁瓣(sidelobes)數為M2。而隨著區段數M的增加,兩個主共振頻帶,會沿著中心波長的兩側向外延伸。
In this thesis, we have fabricated a long-period grating on lithium niobate (LiNbO3) with a channel waveguide buried in slab cladding using a two-step proton exchange. The optical gratings are produced by two different techniques. The first method involves the grating formed on the waveguide surface using PRI-500Ǻphotoresist patterned by a standard photolithography. Additionally, the phase grating is also produced with a proton-exchange technique adopted. The phase-shifted long period gratings with a finite number (M) of sections cascaded together are also designed and fabricated.
第一章
[1]S.E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
[2]F. Kane and Robert R.Krchnavek, “Beazocyclobutene optical waveguide,” IEEE Photo.Tech. Lett., vol. 7, no.5, pp.535-537, 1995.
[3]Gregory H. Olsen, “InGaAsP laser diodes,” Opt. Eng., vol. 20, pp. 440-445, 1981.
[4]Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol. 23, pp.45, 1973.
[5]Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., vol. 27, pp.497-506, 1979.
[6]H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits,” McGraw-Hill Book Company, 1989.
[7]R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers,” Electron. Lett., vol. 21, 1985.
[8]S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions,” Electron. Lett., vol. 21, 1985.
[9]C.W. Pitt, “Sputtered glass optical waveguides,” Electron. Lett., vol. 9, pp.401-403, 1973.
[10]G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electron. Lett., vol. 14, pp.132-134, 1978.
第二章
[1]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol., Vol. 14, pp. 58-65, Apr. 1996.
[2]V. Bhatia, D. Campbell, and R. O. Claus, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett., Vol. 22, pp. 648-650, May 1997.
[3]M. N. Ng, Z. Chen, and K. S. Chiang,, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., Vol. 14, pp. 361-362, Mar. 2002.
[4]A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am., Vol. 62, pp. 1267-1972, Nov. 1972.
[5]D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[6]S. Choi, T. J. Eom, Y. Jung, B. H. Lee, J. W. Lee, and K. Oh, “Broad-band tunable all-fibre bandpass filter based on hollow optical fibre and long-period grating pair,” IEEE Photon. Technol. Lett., vol. 17, pp. 115–117, Jan. 2005.
[7]K. S. Chiang, Y. Liu, M. N. Ng, and S. Li, “Coupling between two parallel long-period fibre gratings,” Electron. Lett., vol. 36, pp. 1408–1409, Aug. 2000.
[8]X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, “High-temperature sensitivity of long-period gratings in B-Ge codoped fiber,” IEEE Photon. Technol. Lett., vol. 13, pp. 818-820, Aug. 2001.
[9]D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-fiber bandpass filter with adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590-1592, Nov. 1998.
[10]M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Commun., vol. 208, pp. 321-327, Jul. 2002.
[11]S. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett., vol. 21, pp. 336-338, Mar. 1996.
[12]M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[13]P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band Erbium-doped fiber amplifer flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett., vol. 9, pp. 1343-1345, Oct. 1997.
[14]J. R. Qian and H. F. Chen, “Gain flatterning fiber filters using phase shifted long period fiber gratings,” Electron. Lett., vol. 34, pp. 1132-1133, May 1998.
[15]M. Harumoto, M. Shigehara, M. Kakui, H. Kanamori, and M. Nishimura, “Compact long-period grating module with multi-attenuation peaks,” Electron. Lett., vol. 36, pp. 512-514, Mar. 2000.
[16]X. F. Yang, X. Guo, C. Lu, and C. T. Hiang, “Apodized long-period grating with low insertion loss,” Microwave. Opt. Technol. Lett., vol. 35, pp. 283-286, May 2002.
[17]A. P. Zhang, X. W. Chen, Z. G. Guan, S. L. He, H. Y. Tam, and W. H. Chung, “Optimization of step-changed long-period gratings for gain flattening of EDFAs,” IEEE Photon. Technol. Lett., vol. 17, pp. 121-123, Jan. 2005.
[18]C. E. Chou, N. H. Sun, and W. F. Liu, “Gain flattening filter of an erbium-doped fiber amplifier based on etching long-period gratings technology,” Opt. Eng., vol. 43, pp.342-345, Feb. 2004.
[19]K. W. Chung and S. Z. Yin, “Design of a phase-shifted long-period grating using the partial-etching technique,” Microwave. Opt. Technol. Lett., vol. 45, pp. 18-21, Aug. 2005.
[20]V. Rastogi and K. S. Chiang, “Long-period gratings in planar optical waveguides,” Appl. Opt., vol. 41, pp. 6351–6355, Oct. 2002.
[21]Q. Liu, K. S. Chiang, and V. Rastogi, “Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence,” J. Lightwave Technol., vol. 21, pp. 3399–3405, Dec. 2003.
[22]K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi and Y. M. Chu, “Widely tunable long-period gratings fabricated in polymer-clad ion-exchanged glass waveguides,” IEEE Photon. Technol. Lett., vol. 15, pp. 1094–1096, Aug. 2003.
[23]K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422–424, Apr. 2004.
[24]Q. Liu, K. S. Chiang, K. P. Lor and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, 241115, June 2005.
[25]D. S. Starodubov, V. Grubsky, and J. Feinberg, “adjustable transmission using cladding-mode coupling,” IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[26]D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in / on planar and channel waveguides: A theory description,” Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007.
[27]K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength,” Electron. Lett., vol. 40, pp. 422-424, Apr. 2004.
[28]Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide,” Appl. Phys. Lett., vol. 86, 241115, June 2005.
[29]X. W. Shu, L. Zhang, and I. Bennion, “Sensitivity Characteristics of Long-Period Fiber Gratings,” J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
[30]M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fibre grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[31]M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings,” Opt. Comm., vol. 208, pp. 321-327, Jul. 2002.
[32]H. Ke, K. S. Chiang, and J. H. Peng, “Analysis of Phase-Shifted Long-Period Fiber Gratings,” IEEE Photon. Technol. Lett., vol.10, no. 11,Nov. 1998
[33]Florence Y.M. Chan, K.S. Chiang, “Analysis of apodized phase-shifted long-period fiber grating,” Opt. Comm. vol. 244, pp. 233-243, 2005
第三章
[1] R.S.Weis and T.K.Gaylord, “Lithium Niobate : Summary of Physical Properties and Crystal Structure ,” Appl. Phys. Lett. ,Vol.37, PP. 171-203, 1985.
[2] S.O.Kasap, “Optoelectronics and Photonics Principles and Practices, ”Prentice Hall.
[3] S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Comm., vol. 17, pp. 332-335,1976
[4] http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3%20Wafers.html.
[5] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608 ,1982.
[6] K. Yamamoto, Tetsuo” Characteristics of pyrophosphoric acid PE inLiNbO3”, J. Appl. Phys. 70, 11, p6663, 1991.
[7] E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid,” IEEE Trans. Lightwave Technol., vol. 11, no. 2, pp. 277-284, Feb. 1993.
[8] E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid,” Electron. Lett., vol.26, pp. 81-82, 1990.
[9] E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid,” IEEE Trans. Photon. Technol. Lett., vol. 3, no. 11, pp. 1006-1008, Nov. 1991.
[10] M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides,” J. Opt. Comm., vol. 9 pp. 19-23, 1988.
[11] A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
[12] Y. N. Korkishko, V. A. Fedorov, and O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton exchange,” J. Lightwave Technol., vol. 18, pp. 562-567, 2000.
[13] Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties,” IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996.
[14] Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and opticalproperties of proton-exchanged waveguides on Z-cut lithium niobate” Appl. Opt. ,Vol. 35, No. 36 y 20 December 1996.
[15] R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., 25, p458-460 ,1974.
[16] T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides,” Appl. Opt., 30, p1085-1089 ,1991.
[17] J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada,“Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion,” Appl. Phys. Lett., 27, p19-21 ,1975.
[18] W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides,” Appl. Phys. Lett., 33, p70-72 ,1978.
[19] T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides,” Appl. Phys. Lett., 30, p376-379 ,1977.
[20] S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide,” Appl. Phys. Lett., 31, p742-744 ,1977.
[21] J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, p509-511 ,1981.
[22] R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3,” Appl. Phys .Lett., 33, p733-734 ,1978.
[23] Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength,” Electron. Lett., vol. 32, no. 11, pp. 1003-1005, May 1996.
[24] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang , “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996
[25] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused
LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978.
第四章
[1] R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Appl. Opt. Vol. 12, pp. 2901-2908, Apr. 1973.
[2] C. J. Ma, “Tunable Thermo-Optical Mach-Zehnder Waveguide Interferometer Fabricated in Glass by Ion-Exchange Method,” National Cheng Kung University, Master thesis, 2010.
[3] S. I. Najafi, Introduction to Glass Integrated Optics. Boston: Artech House, 1992.
[4] D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description,” Opt. Laser Technol., Vol. 39, pp. 1204-1213, Sept. 2007.
[5] K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides,” IEEE Photon. Technol. Lett., Vol. 15, pp. 1094-1096, Aug. 2003.
第五章
[1] Wei Jin, Kin Seng Chiang and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching,” Opt. Lett. , Vol. 35, No. 4 , February 15, 2010.
[2] W. Jin, K. S. Chiang, Q. Liu, C. K. Chow, H. P. Chan and K. P. Lor, “Lithium–Niobate Channel Waveguide for the Realization of Long-Period Gratings,” IEEE Photon. Technol. Lett., Vol. 20, No. 14 July. 15, 2008.
[3] Ping-Rang Hua, De-Long Zhang, and Edwin Yue-Bun Pun, “Long-Period Grating on Strip Ti : LiNbO3 Waveguide Embedded in Planar Ti : LiNbO3 Waveguide,” IEEE Photon. Technol. Lett., VOL. 22, NO. 18, SEPTEMBER 15, 2010
[4] W. Jin, K. S. Chiang, and Q. Liu,“Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate,” Opt. Express, Vol. 16, No. 25, December 8, 2008.
校內:2019-11-07公開