簡易檢索 / 詳目顯示

研究生: 許志隆
HSU, CHIH-LUNG
論文名稱: 異向性圓柱承受沿軸向變化之荷重之解析
Anisotropic Elastic Cylinders Subjected to Surface Tractions Varying in the Axial Direction
指導教授: 譚建國
Tarn, Jiann-Quo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 62
中文關鍵詞: 狀態空間法異向性圓柱表面荷重
外文關鍵詞: state space, anisotropic, surface tractions
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文由三維彈性力學出發,在圓柱座標系統下,建立柱體側表面荷重沿軸向成多項式分布作用下之狀態空間法解析模式。相較於傳統的理論架構,狀態空間解析模式將所處理之力學問題視為一線性系統,針對問題審慎選擇狀態向量,對場量變數適當的分類,透過有系統的矩陣運算與推導,得到形式簡單優美的狀態方程式。將此一理論套用至單層軸對稱正向性圓柱中,其中圓柱承受與軸向無關之外力作用,驗証由本文所得之解和參考文獻相同。進而探求單層軸對稱正向性圓柱和多層軸對稱正向性圓柱受與z軸有關之外力作用下之位移和應力。

     On the basis of three-dimensional basic equations of elasticity in the cylindrical coordinate, a state space formalism of a circular cylindrical elastic body subjected to surface tractions varying in the axial direction is established. Herein the surface tractions are prescribed in power functions of the axial coordinate. In the state space formalism the physical problems are dealt with in a linear system in comparison with the conventional formalisms. By grouping the field variables properly using matrix notations and partitioning the constitutive matrices accordingly, the basic equations of elasticity are formulated into a concise state equation in terms of the state vector. The formalism is examined through the analysis of an axisymmetric homogeneous orthotropic cylinder subjected to surface loadings independent of the axial direction. Further investigations in the axisymmetric problems of both single-layered and multi-layered orthotropic cylinders subjected to surface tractions varying in the z-axis are analyzed.

    摘要........................................................I 誌謝... .................................................... II 目錄.........................................................Ш 圖目錄.......................................................Ⅴ 符號表...................................................... Ⅸ 第一章 緒論...................................................1 第二章 三維異向性彈性力學之狀態空間數學模式...................3 2-1 彈性力學基本方程式....................................3 2-2 狀態方程式之推導......................................6 2-3 外力沿z軸呈多項式分布.................................7 第三章 單層軸對稱正向性材料問題.............................11 3-1 問題陳述.............................................11 3-2 外力與z軸無關情形....................................12 3-3 外力沿z軸成線性多項式分布............................14 3-4 外力沿z軸成二次多項式分布............................18 第四章 多層軸對稱正向性材料問題.............................22 4-1 問題陳述............................................22 4-2 外力分布與z軸無關...................................24 4-3 外力沿z軸呈多項式分布...............................25 第五章 數值範例.............................................26 第六章 結論與討論...........................................29 參考文獻.....................................................30 附錄A........................................................32 附錄B........................................................34 自述.........................................................62

    1.Alshits, V.I., Kirchner, H.O.K., ”Cylindrically anisotropic, radially inhomogeneous elastic materials ”, Proceeding of Royal Society of London A 457,671-693(2001).

    2.Chen,T., Chung,C.T., Lin,W.L., ”A revisit of a cylindrical anisotropic tube subjected to pressuring , shearing, torsion, extension and a uniform temperature change.”, International Journal of Solids and Structures 37,5143-5159(2000).

    3.Christensen, R.M., ”Properties of carbon fibers ”, Journal of the Mechanics and Physics of Solids 42,681-695(1994).

    4.Kollar, L.P., Spring, G.S., ”Stress analysis of anisotropic laminated cylinders and cylindrical segements ”, International Journal of Solids and Structures 29,1449-1517(1992).

    5.Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body , Translated from the revised 1977 Russian edition, Mir, Moscow (1981).

    6.Pagano, N.J., ”The stress field in a cylindrically anisotropic body under two-dimension surface tractions ”, Journal of Applied Mechanics 39,791-796(1972).

    7.Pease, M.C., Methods of Matrix Algebra .Academic Press , New York (1965).

    8.Tarn, J.Q., ”Exact solution for functionally graded anisotropic cylinders subjected to thermal and mechanical loads ”, International Journal of Solids and Structures 37,5143-5159(2000).

    9.Tarn, J.Q. and Wang,Y.M.,”Laminated composite tubes under extension, torsion, bending, shearing and pressuring : a state space approach ”, International Journal of Solids and Structures 38, 9053-9075(2001).

    10.Tarn, J.Q., ”A state space formalism for anisotropic elasticity.PartI: Recentlinear anisotropy ”, International Journal of Solids and Structures 39,5143-5155(2002a).

    11.Tarn, J.Q., ”A state space formalism for anisotropic elasticity.PartII:Cylindrical anisotropy ”, International Journal of Solids and Structures 39,5157-5172(2002b).

    12.Tarn, J.Q., ”Exact solutions of a piezoelectric circular tube or bar
    under extension, torsion, pressuring, shearing,uniform electric loading and temperature change ”, Proceeding of Royal Society London A, in press(2002c).

    13.Ting, T.C.T., Anisotropic Elasticity,Theory andApplications , Oxford University Press,New York(1996a).

    14.Ting,T.C.T., ”New solutions to pressuring, shearing, torsion, and
    extension of a circular tube or bar of a cylindrically anisotropic
    material ”, Proceedings of the Royal Society of London A 455,3527-3542(1999).

    15.徐仲康,”複合層板邊界層效應之初步探討 ”,國立成功大學,土木工程研究所碩士論文,民國八十八年六月.

    下載圖示 校內:2007-01-24公開
    校外:2007-01-24公開
    QR CODE