簡易檢索 / 詳目顯示

研究生: 林金田
Lin, Chin-Tien
論文名稱: 電晶體式氫氣感測器之製備及感測特性研究
Fabrication and Sensing Characteristics of Transistor-Based Hydrogen Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 131
中文關鍵詞: 無電鍍磷化銦鎵氫氣感測器砷化鋁鎵電晶體
外文關鍵詞: AlGaAs, InGaP, transistor, hydrogen sensor, electroless plating
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首度使用無電鍍(EP)技術分別在砷化鋁鎵(Al0.24Ga0.76As)與磷化銦鎵(In0.49Ga0.51P)兩種摻雜磊晶膜基材上沉積鈀膜,以製備鈀閘極高電子移動率電晶體(High-Electron-Mobility Transistor, HEMT)作為氫氣感測器,並探討無電鍍三端電晶體元件的電性特性與氫氣感測表現。另外,根據本文所提出之氫氣吸附模式,利用穩態與暫態量測所得之結果求出熱力學及動力學參數。
    研究結果顯示,無電鍍技術可成功運用於三端元件閘極之製備,由I-V電性分析,無電鍍製備鈀/砷化鋁鎵與鈀/磷化銦鎵電晶體之鈀電極能有效控制空乏層,擁有良好的電流控制能力。所得之臨限電壓值分別為8.68x10-3 V與-1.1 V,而線性區轉移電導最高值分別在閘極偏壓( )0.66 V與0.34 V位置為174.9 mS/mm與116.6 mS/mm ( =2.0 V時)。在氫氣感測表現上,鈀/砷化鋁鎵電晶體偵檢範圍為5 ppm ~ 1 % H2/N2,溫度操作範圍在303 ~ 363 K。由於砷化鋁鎵基材被鍍浴侵蝕,造成結構的破壞,導致氫氣感測性能較差。至於鈀/磷化銦鎵電晶體則具備極佳之氫氣感測表現,有低偵測極限(<5ppm)、寬廣偵檢範圍( 5 ppm ~ 1 % H2/air )、感測再現性佳;吸附與脫附速率迅速( 303 K、1% H2/air下, =9 s, =35 s )、操作溫度範圍廣( 303 K~503 K )。因此,本元件具備開發為多用途高性能氫氣感測元件之潛力。

    In this dissertation, the electroless plating (EP) technique was employed to deposit palladium film on doped epitaxial Al0.24Ga0.76 As and In0.49Ga0.51P substrates, respectively, for fabrication of palladium gate pseudomorphic high-electron-mobility transistors (pHEMTs) as hydrogen sensors. Studies on the EP/Al0.24Ga0.76As and EP/In0.49Ga0.51P sensor transistors were focused on based on the proposed hydrogen adsorption model, investigations of I-V characteristics and hydrogen sensing performances. In addition, the thermodynamic and kinetic parameters of the adsorption reaction were estimated from the steady-state and transient analyses.
    From experimental results, the Pd gate of three-terminal devices were successfully fabricated by the electroless plating method. Both of the studied EP Pd/Al0.24Ga0.76As and EP Pd/In0.49Ga0.51P devices which can effectively modulate the thickness of depletion region exhibit superior current control ability. The values of threshold voltages are 8.68x10-3 V for the EP Pd/Al0.24Ga0.76As device, and -1.1 V for the EP Pd/In0.49Ga0.51P device, respectively. Besides, the corresponding transconductance is 174.9 mS/mm for the former at applied gate bias of 0.66 V, and is 116.6 mS/mm for the latter at bias of 0.34 V, respectively. From studies of hydrogen sensing performances, the EP Pd/Al0.24Ga0.76As device can be worked under hydrogen concentrations ranging from 5 ppm to 1 % H2/N2, and temperature range of 303~363 K. However, for the Pd/Al0.24Ga0.76As device, the sensing performance is deteriorated due to the etching of Al0.24Ga0.76As substrate by the plating solution. The EP Pd/In0.49Ga0.51P device demonstrates excellent hydrogen sensing performances, such as high hydrogen sensitivity, low detection limit (<5 ppm), wide detection range(5 ppm ~ 1 % H2/air), good reproducibility, rapid response and recovery rates( =9 s、 =35 s at 303 K and 1 % H2/air). Furthermore, the studied Pd/InGaP device can be worked at a wide temperature regime (303~503 K). Therefore, it is promising to further develop the Pd/In0.49Ga0.51P device as a versatile high-performance hydrogen sensor.

                                   頁 次 考試合格證明書 中文摘要                          I 英文摘要                          II 誌謝                            III 總目錄                           IV 表目錄                           VII 圖目錄                           VIII 符號說明                          XIII 第一章 緒論 1.1化學感測器                        1 1.2氣體感測器                        2 1.2.1氣體感測器之介紹                   2 1.2.2氣體感測器之種類                   3 (1)觸媒燃燒型                        3 (2)金屬氧化物半導體型                    4 (3)電化學型                         4 (4)光學型                          5 (5)場效電晶體型                       5 (6)石英振動型                        6 1.3氫氣感測器之重要性                    6 1.4半導體式氫氣感測器之發展                 7 1.5研究動機與目的                      10 第二章 原理 2.1無電鍍介紹                        18 2.2無電鍍基本反應                      19 2.3鈀/半導體場效電晶體                   21 2.3.1金半場效電晶體原理                  21 2.3.2金半場效電晶體電流-電壓特性             23 2.4電晶體氫氣感測機制                    25 2.4.1平衡狀態理論模式                   26 2.4.2氫氣吸附之動力模式                  27 第三章 實驗部分 3.1實驗藥品與材料                      35 3.1.1材料                         35 3.1.2化學藥品                       35 3.1.3氣體                         36 3.2實驗儀設備及分析儀器                   36 3.2.1設備及裝置                      37 3.2.2分析儀器                       37 3.3實驗步驟                         38 3.3.1元件製作                       38 3.3.2氫氣檢測實驗                     42 第四章 結果與討論(I) 鈀/砷化鋁鎵電晶體氫氣感測器 4.1無電鍍鈀膜分析                      50 4.2 I-V電性特性分析                   50 4.3氫氣感測表現                       52 4.3.1穩態感測                       52 4.3.2暫態感測                       55 4.4無電鍍析鍍對基材穩定性之影響               57 4.4.1鹼性鍍浴系統對基材之影響               57 4.4.2酸性鍍浴系統對基材之影響               58 第五章結果與討論(II) 鈀/磷化銦鎵電晶體氫氣感測器 5.1無電鍍鈀膜分析                      81 5.2化學鍍液對基材穩定性之影響                81 5.3 I-V電性特性分析                   82 5.4氫氣感測表現                       82 5.4.1穩態感測                       82 5.4.2暫態感測                       87 第六章 結論與建議                      123 參考文獻                           126 自述

    1.W. Gopel, “Chemical Imaging: I. Concepts and Visions for Electronic and Bioelectronic Noses”, Sensor and Actuators B, 52, 125-142, 1998.

    2.涂泓先, “以超音波與濺鍍法製備電化學式銨離子與氨氣感測器”, 國立成功大學化學工程學系碩士論文, 2000。

    3.A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld and K. S. Goto, “Solid-State Gas Sensors: A Review ”, J. Electrochem. Soc., 139, 3690-3704, 1992.

    4.潘信文, “以無電鍍法製備鈀/砷化鋁鎵與鈀/氮化鎵蕭特基二極體及其氫氣感測之研究”, 國立成功大學化學工程學系碩士論文, 2005。

    5.R. F. Taylor and J. S. Schultz, “Handbook of Chemical and Biological Sensors”, Institute of Physics Publishing, Philadelphia, PA, 1996.

    6.M. J. Madou and S. R. Morrison, “Chemical Sensing with Solid State Devices”, San Diego: Academic Press, 1989.

    7.D. Dwivedi, R. Dwivedi and S. K. Srivastava, “A Comparative Study on Capacitance and Conductance-Voltage Response of Titanium Dioxide Based MOS Hydrogen Sensor”, Solid-State Phenomena, 55, 113-116, 1997.

    8.Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, “Analyzing the Mechanism of Hydrogen Adsorption Effects on Diamond Based MIS Hydrogen Sensors”, Sensors and Actuators B, 35(1-3), 68-72, 1996.

    9.K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen and W. C. Liu, “A Hydrogen Sensing Pd/InGaP Metal-Semiconductor (MS) Schottky Diode Hydrogen Sensor”, Semiconductor Science and Technology, 18(7), 615-619, 2003.

    10.S. K. Hazra and S. Basu, “Pd/TiOx/Ti-Au (x<2)Metal-Active Insulator- Metal (MIM) Hydrogen Gas Sensor at Elevated Temperatures”, Sensor Letters, 3(2), 179-182, 2005.

    11.K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu and W. C. Liu, “A Novel Pd/oxide/GaAs Metal -Insulator-Semiconductor Field-Effect Transistor (MISFET) Hydrogen Sensor”, Semiconductor Science and Technology, 16(12), 997-1001, 2001.

    12.C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong and W. C. Liu, “Temperature-Dependent Hydrogen Sensing Characteristics of a Pd/Oxide/Al0.24Ga0.76As High Electron Mobility Transistor”, Electron. Lett., 40(25), 1608-1609, 2004.

    13.G. Cui, J. S. Lee, S. J. Kim, H. Nam, G. S. Cha and H. D. Lim, “Potentiometric pCO(2) Sensor Using Polyaniline-Coated pH-Sensitive Electrodes”, Analyst, 123(9), 1855-1859, 1998.

    14.M. Yousuf, B. Kuliyev, B. Lalevic, and T. L. Poteat, “Pd-InP Schottky Diode Hydrogen Sensors ”, Solid-State Electron 25(8), 753-758, 1982.

    15.W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen and W. C. Wang, “Application of Selective Removal of Mesa Sidewalls for High- Breakdown and High-Linearity Ga0.51In0.49P=In0.15Ga0.85As pseudomorphic transistors”, Appl. Phys. Lett., 74, 2155-2157, 1999.

    16.I. Lundström, S. Shivaraman, C. Svensson and L. Lundkvist, “A Hydrogen-Sensitive MOS Field Effect Transistor”, Appl. Phys. Lett., 26(2), 55-57, 1975.

    17.M. Peschke, H. Lorenz, H. Riess and I. Eisele, “Recognition of Hydrogen and Ammonia by Modified Gate Metallization of the Suspended-Gate FET”, Sensors and Actuators B, 1, 21-24, 1990.

    18.K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer and I. Eisele, “Hydrogen Detection at High Concentration with Stabilized Palladium”, Sens. Actuators B, 78, 138-143, 2001.

    19.Z. Gergintschew, P. Kornetzky and D. Schipanski, “The Capacitively Controlled Field Effect Transistor (CCFET) as a New Low Power Gas Sensor”, Sens. Actuators B, 36, 285-289, 1996.

    20.Y. Q. Jia and G. G. Qin, “Effects of Hydrogen on Al/p-Si Schottky Barrier Diodes”, Appl. Phys. Lett. 56(7), 641, 1990.

    21.R. C. Hughes and W. K. Schubert, “Thin Films of Pd/Ni Alloys for Detection of High Hydrogen Concentrations,” J. Appl. Phys., 71(1), 542, 1992.

    22.T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, M. Chen, “MOS. and Schottky Diode Gas Sensors Using Transition Metal Electrodes”, J. electr. Mater. 12(1), 181, 1983.

    23.陳嘉銘, “以電泳法製備鈀/磷化銦蕭特基二極體氫氣感測器之研究”, 國立成功大學化學工程學系碩士論文, 2005。

    24.J. P. Xu, P.T. Lai, B. Han and W. M. Tang, “Determination of Optimal Insulator Thickness for MISiC Hydrogen Sensors”, Solid-State Electronics, 48(9), 1673-1677, 2004.

    25.J. H. Song, W. Lu, J. S. Flynn and G. R. Brandes, “AlGaN/GaN Schottky Diode Hydrogen Sensor Performance at High Temperatures with Different Catalytic Metals ”, Solid-State Electronics, 49(8), 1330-1334, 2005.

    26.H. Hasegawa, “Fermi Level Pinning and Schottky Barrier Height Control at Metal-Semiconductor Interfaces of InP and Related Materials”, Jpn. J. Appl. Phys. Part 1, 38, 1098, 1999.

    27.V. Heine, “Theory of Surface States”, Phys. Rev., 138, 1689, 1965.

    28.H. Hasegawa and H. Ohno, “Unified Disorder-Induced Gap State Model for Insulator/Semiconductor and Metal/Semiconductor Interfaces ”, J. Vac. Sci. Technol. B, 4, 1130, 1986.

    29.H. I. Chen, Y. I Chou and C. Y. Chu, “A Novel High-Sensitivity Pd/InP Hydrogen Sensor Fabricated by Electroless Plating”, Sensors and Actuators B: Chemical, 85, 10-18, 2002.

    30.Y. I. Chou, C. M. Chen, W. C. Liu and H. I. Chen, “A New Pd/InP Schottky Hydrogen Sensor Fabricated by Electrophoretic Deposition with Pd Nanoparticles”, IEEE Electron Device Lett. 26 (2), 62-65, 2005.

    31.H. I. Chen, C. K. Hsiung and Y. I Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique”, Semiconductor Sci. and Technol., 18, 620-626, 2003.

    32.C. A. Mead, “Schottky Barrier Gate Field-Effect Transistor”, Proc. IEEE, 54, 307, 1966.

    33.施敏, “半導體物理元件與製作技術”, 國立交通大學出版社, 2003。

    34.C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong and W. C. Liu, “Characteristics of a Pd–Oxide–In0.49Ga0.51P High Electron Mobility Transistor (HEMT)-Based Hydrogen Sensor ”, Sensors and Actuators B, 113(1), 29-35, 2006.

    35.陳勝利, 徐惇穎, “以模糊及類神經理論探討次微米MOSFET元件臨限電壓預測之研究”, 大業學報, 8(2), 95-102, 1999。

    36.W. P. Kang and Y. Gurbuzm, “Comparison and Analysis of Pd- and Pt-GaAs Schottky Diodes for Hydrogen Detection”, J. Appl. Phys. 75(12), 8175, 1994.

    37.J. Liu, C. R. Oritz, Y. Z. Hang, H. Bakhru and J. W. Corbett, “Effects of Hydrogen on the Barrier Height of a Titanium Schottky diode on p-Type Silicon”, Phys. Rev. B, 44(16), 8918-8922, 1991.

    38.Y. Q. Jia and G. G. Qin, “Effects of hydrogen on Al/p-Si Schottky Barrier Diodes” ,Appl. Phys. Lett., 56(7), 641-643, 1990.

    39.A. Spetz, M. Armgarth and I. Lundström, “Hydrogen and Ammonia Response of Metal-Silicon Dioxide-Silicon Structures with Thin Platinum Gates”, J. Appl. Phys., 64, 1274-1283, 1988.

    40.R. J. Silbey and R. A. Alberty, “Physical chemistry”, Wiley, New York, 2005.

    41.R. A. Alberty and R. J. Silbey, “Physical Chemistry”, New York: John Wiley & Sons, 1992.

    42.周彥伊, “以無電鍍法製備鈀蕭特基二極體氫氣感測器之研究”, 國立成功大學化學工程學系碩士論文, 2001。

    43.朱秦億, “鈀及鈀銀複合膜之製備、特性分析及其氫/氮選透性之研究”, 國立成功大學化學工程學系博士論文, 2004。

    44.周彥伊, “鈀/磷化銦蕭特基二極體氫氣感測器之製備、特性分析及感測研究”, 國立成功大學化學工程學系博士論文, 2005。

    45.M. Johansson, I. Lundström and L. G. Ekedahl, “Bridging the Pressure Gap for Palladium Metal-Insulator-Semiconductor Hydrogen Sensors in Oxygen Containing Environments”, J. Appl. Phys, 84, 44, 1998.

    46.J. Fogelberg and L. G. Petersson, “Kinetic Modeling of the H2-O2 Reaction on Pd and of its Influences on the Hydrogen Response of a Hydrogen Sensitive Pd Metal-Oxide-Semiconductor Device”, Surf. Sci. 350, 91, 1996.

    47.L. G. Petersson, H. M. Dannetun and I. Lundström, “The Water-Forming Reaction on Ralladium”, Surf. Sci., 161, 77, 1985.

    下載圖示 校內:2007-08-30公開
    校外:2007-08-30公開
    QR CODE