| 研究生: |
吳佩璇 Wu, Pei-hsuan |
|---|---|
| 論文名稱: |
以有機金屬氣相沉積法成長砷化鎵系列量子井太陽能電池之研究 An Investigation of GaAs-based Quantum Well Solar Cells Grown by MOVPE |
| 指導教授: |
蘇炎坤
Su, Yan-kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 太陽能電池 、量子井 、砷化鎵 |
| 外文關鍵詞: | Solar cell, quantum well, GaAs |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究利用有機金屬氣相沉積法成長III-V族太陽能電池,所使用的結構有p-n 與p-i-n 接面,材料包含InGaAs/GaAs, GaAsN/InGaAs量子井與 GaAs單一接面結構。並且使用高解析度X射線繞射儀、光激發螢光光譜儀、二次離子質譜分析儀、高解析度電子穿透顯微鏡、太陽光譜儀及自製頻譜響應儀器等量測設備分析成長材料之特性與太陽能電池元件之效率特性。首先,我們探討在Ge基板上成長GaAs系列的材料,極性的不同易產生反晶相區域,造成效率變差。磊晶成長多接面太陽能電池時首先就必須克服此問題。經實驗,我們使用兩段式溫度成長-先770℃高溫成長再降溫至650℃成長InGaAs-能徹底抑制反晶相區域的形成,成長出亮面磊晶品質,此改善對後續發展多接面太陽能電池有極大幫助。
接著成長具有應力的InGaAs/GaAs量子井結構,此結構能吸收長波段區域的太陽光,具有做為下一代高效率太陽能電池設計的潛力。我們討論不同的量子井結構,一系列的太陽電池元件設計參數改變,包含不同本質層的厚度、不同量子井/能障寬度與量子井的對數,對於太陽能電池的效率與特性影響, 我們發現本質層的厚度,即量子井的設計,影響短路電流甚巨,對於開路電壓影響較小。實驗也證實越厚的本質層厚度,太陽能電池效率下降的越快。
由於良好的磊晶品質受限於匹配的晶格常數,因此我們第一個成功設計出利用應力補償機制成長GaAsN/InGaAs量子井結構。InGaAs的壓縮應力與GaAsN的舒張應力能使整體結構的晶格常數補償,於有限的磊晶成長條件下不至於發生晶格鬆弛,並且更能增加材料的組成達到延伸吸收波段區域的目的。 GaAsN/InGaAs應力補償量子井結構太陽能電池在太陽光AM1.5G的照射量測下,可達到 26.13 mA/cm2 的高短路電流,此電流值遠高於利用InGaNAs 材料設計的太陽能電池,且吸收的量子頻譜響應隨著In含量的增加可延伸至1.2-eV。初期研究此GaAsN/InGaAs應力補償量子井結構太陽能電池已顯示出許多優越的材料特性,對於下一代高效率太陽能電池的設計相當具有潛力。
此外,我們首度利用奈米尺度的小球,以浸泡沉積的方式應用於砷化鎵太陽能電池上。此種製成設計可達到表面粗糙化的效果,以利效率提升。實驗也證實出,利用奈米小球單層沉積於太陽能電池表面確實能增加效率,並且對於太陽光譜的吸收從400-900 nm波段皆有提升,而且效率提升約25%的相對值。
本論文成功展示了許多砷化鎵系列的太陽能電池與量子井結構,此種設計具有能吸收長波段區域的太陽光,並且能提高短路電流,避免多接面太陽能電池設計時遭遇到的限制電流問題,顯示該砷化鎵量子井系列的太陽能電池極具有可取代現有塊材設計的太陽能電池。
In this dissertation, we have successfully fabricated and investigated GaAs-based quantum well solar cells using p-n and p-i-n structure, including InGaAs/GaAs, GaAsN/InGaAs quantum wells and GaAs single junction materials. Several material characterization techniques, such as high resolution X-ray diffraction (HRXRD), modulation spectroscopy, photoluminescence (PL), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM) have been performed to characterize the material quality of these epitaxial structures.
Firstly, we have investigated the surface morphology of Ga(In)As films grown on offcut Ge substrates by metal-organic vapor-phase epitaxy (MOVPE). The interface properties strongly depended on the growth conditions. We found that two-step growth temperatures can obtain good morphology and suppress the antiphase domains (APDs). Under optimized growth conditions APD-free Ga(In)As film on Ge was obtained. Our results indicate that the 6° off-cut Ge substrate with two-step temperatures growth at 770℃ and 650℃, are the optimum set of growth conditions for the buffer layer growth of Ga(In)As/Ge heterostructure solar cells. The root mean square (rms) roughness was approximately 4.58 nm over a 10×10 m2 area. The buffer Ga(In)As films on Ge substrate were developed in preparation for growing multi-junction solar cells and obtained high performance with good morphology.
A lattice-strained In0.11GaAs/GaAs MQW solar cell is proposed to extend the long-wavelength absorption as a candidate for the next-generation high-efficiency multi-junction solar cell has been fabricated. A series of experiments utilizing strained InGaAs quantum wells with GaAs barriers to determine the performance of the InGaAs/GaAs MQWs is described including the effect of intrinsic region thickness and individual thickness of well/barrier. MQW solar cells with different thicknesses of i-layers and pairs of QWs were used to extend the absorption region and reduce recombination losses. The optimal design parameters for the solar cells were determined. It was also found that MQW solar cell structures with thicker intrinsic layers showed drastically impaired performance.
A detailed study of the performance of the strain-compensated (SC-) GaAsN/InGaAs quantum wells solar cell has been reported. Limitations of lattice-mismatch could be overcome because the compressive strain in the InGaAs layers matched the tensile strain in the GaAsN layers. GaAsN/InGaAs strain-compensated MQWs (SC-MQWs) solar cells, lattice matched to GaAs, are proposed as a means of extending the long-wavelength absorption to make a competitive candidate in a cascade solar cell structure. We demonstrated that this GaAsN/InGaAs SC-MQWs solar cell could achieve a high short-circuit current density of about 26.13 mA/cm2, under AM1.5G illumination, which is higher than that of the InGaNAs cell. And the spectrum of internal quantum efficiency could be extended to 1.2-eV and a higher short-circuit current density was obtained by increasing the In. The GaAsN/InGaAs SC-MQWs structures shows many of the characteristics required to make it a candidate for the next generation of multi-junction solar cells, which means this design can be used as the third junction in a future generation ultrahigh-efficiency three- and four-junction devices.
Furthermore, we also investigate the improvement of solar cell by depositing a monolayer of nano-sphere with varying size on the top of GaAs cap layer. The surface texture is formed by nano-sphere dip-coating. It has been experimentally found that the nano-sphere dip-coating improves the transmittance in the spectral range of 400-900 nm and the efficiency of over 25% increase relatively of a GaAs-based solar cell.
[1.1] J. Nelson, THE PHYSICS OF SOLAR CELLS. Imperial College press, 2003 p. 182.
[1.2] J. M. Olson, T. Gessert, and M. M. Al-Jassim, “GaInP2/GaAs - A current- and lattice-matched tandem cell with a high theoretical efficiency,” in Proc. IEEE 18th Photovoltaic Specialists Conf., 1985, pp. 552-555.
[1.3] M. Yamaguchi, C. Amano, H. Sugiura, A. Yamamoto, “High efficiency AlGaAs-GaAs tandem solar cells with tunnel junction,” in Proc. IEEE 19th Photovoltaic Specialists Conf., New York, 1987, pp. 1484-1485.
[1.4] M. Yamaguchi, and S. Wakamatsu, “Super-high efficiency solar cell R&D program in Japan,” in Proc. IEEE 25th Photovoltaic Specialists Conf., New York, 1996, pp. 9-11.
[1.5] M. Yamaguchi, and A. Luque, “High efficiency and high concentration in photovoltaics,” IEEE Trans. Electron Devices, vol. 46, no. 10, pp. 2139-2144, 1999.
[1.6] C. Algora and V. Díaz, “Guidance for reducing photovoltaic cost using very high concentrator GaAs solar cells,” in Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona, Spain, 1997, pp. 1724–1727.
[1.7] M. F. Piszczor, S. White, M. Douglas, B. Spence, P.A. Jones, “Development of an ultraflex-based thin film solar array for space applications,” in Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, 2003, pp. 793-796.
[1.8] N. Chandrasekaran, T. Soga, T. Jimbo “GaAs film on Si substrate transplanted from GaAs/Ge structure by direct bonding,” Appl. Phys. Lett., vol. 82, no. 22, pp. 3892-3894. 2003.
[1.9] J. J. Schermer, G. J. Bauhuis, P. Mulder, W. J. Meulemeesters, E. Haverkamp, M. M. AJ Voncken, P. K. Larsen. “High rate epitaxial lift-off of InGaP films from GaAs substrates,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2131-2133, 2000.
[1.10] M. Konagai, M. Sugimoto, and K. Takahashi, “High efficiency GaAs thin film solar cells by peeled film technology,” J. Cryst. Growth, vol. 45, pp. 277-280, 1978.
[2.1] B. Burnett, The basic physics and Design of III-V Multijunction Solar cells. 2002.
[2.2] W Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., vol. 28, pp. 435, 1949.
[2.3] M. A. Green, Solar cells operating Principles, Technology, and System Application. Prentice-Hall, Inc., Englewood Cliffs, 1982.
[2.4] S. M. Sze, Semiconductor Devices: Phusics and Technology. John Wiley & Sons, Inc., p.289, 2001.
[2.5] S. Silvestre, L. Sentis, and L. Castaner “A Fast Low-Cost Solar Cell Spectral Response” IEEE Transactions on Instrumentation and Measurement, vol. 48, No. 5, pp. 944-948, 1999.
[2.6] H. Mackel and A. Cuevas “Capturing the spectral response of solar cells with a quasi-steady” Prog. Photovolt: Res. Appl., vol. 14, pp. 203-212, 2006.
[2.7] L. Philippe Boivin, Wolfgang Budde, C. X. Dodd, and S. R. Das “Spectral response measurement apparatus for large area solar cells” Applied Optics, vol. 25, No.16, pp. 2715-2719, 1986.
[2.8] H. Field, “UV-VIS-IR Spectral Responsivity Measurement System for Solar Cells,” Presented at the National Center for Photovoltaics Program Review Meeting Denver, Colorado September 8-11, 1998.
[3.1] S. Strite, M. S. Unlu, K. Adomi, G. B. Gao, A. Agarwal, A. Rockett, H. Morkoc, D. Li, Y. Nakamura and N. Otsuka, “GaAs/Ge/GaAs heterostructures by molecular beam epitaxy,” J. Vac. Sci. Technol. B, vol. 8, pp. 1331-1140, 1990.
[3.2] N. Chsnd, J. Klem and H.Morkoc, “Pnp GaAs/Ge/Ge phototransistor grown by molecular beam epitaxy: Implications for bipolar and hot-electron transistors,” Appl. Phys. Lett., vol. 48 pp. 484-486, 1986.
[3.3] P. A. Iles, Y. C. M. Yeh, F. H. Ho, C. L. Chu and C. Cheng, “High-efficiency (>20% AM0) GaAs solar cells grown on inactive-Gesubstrates,” IEEE Electron Devices Lett., vol. 11, no. 4, pp. 140-142, 1990.
[3.4] T. Takamoto, T. Agui, K. Kamimura and M. Kaneiwa, “Multijunction solar cell technologies - high efficiency, radiation resistance, and concentrator applications,” in Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, 2003, pp. 11-13.
[3.5] C. M. Fetzer, R. R. King, P. C.Colter,K. M. Edmondson, D. C. Law, A. P. Stavrides, H. Yoon, J. H. Ermer, M. J. Romero, and N. H. Karam, “High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE,” J. Crystal Growth, vol. 261, pp. 341-348, 2004.
[3.6] H. L. Cotal, D. R. Lillington, J. H. Ermer, R. R. King, N. H. Karam, S. R. Kurtz, D. J. Friedman, J. M. Olson, S. Ward, A. Duda, K. A. Emery, T. Moriarty, “Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells,” Conference: Program and Proceedings: NCPV Program Review Meeting, 2000, pp. 111-112.
[3.7] L. Lazzarini, L. Nasi, G. Salviati, C.Z. Fregonara, Y. Li, L. J. Giling, C. Hardingham and D.B. Holt, “Antiphase disorder in GaAs/Ge heterostructures for solar cells,” Micron, vol. 31, pp. 217-222, 2000.
[3.8] N.-H. Cho and C. B. Carter, “Formation, faceting, and interaction behaviors of antiphase boundaries in GaAs thin films,” J. Mater. Sci., vol. 36, pp. 4209-4222, 2001.
[3.9] S. M. Ting and E. A. Fitzgerald, “Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1–x/Si and Ge substrates,” J. Appl. Phys. Vol. 87, pp. 2618-2628, 2000.
[3.10] Y. Li, G. Salviati, M.M.G. Bongers, L. Lazzarini, L. Nasi and L.J. Giling, “On the formation of antiphase domains in the system of GaAs on Ge,” J. Cryst. Growth, vol. 163, pp. 195-202, 1996.
[3.11] H. Kroemer, “Polar-on-nonpolar epitaxy,” J. Cryst. Growth, vol. 81, pp. 193-204, 1987.
[3.12] D. B. Holt, “Antiphase boundaries in semiconducting compounds,” J. Phys. Chem. Solids, vol. 30, pp. 1297-1308, 1969.
[3.13] P. M. Petroff, “Nucleation and growth of GaAs on Ge and the structure of antiphase boundaries,” J. Vac. Sci. Technol. B vol. 4, pp. 874-877, 1986.
[3.14] R.W. Grant, J.R. Waldrop, S.P. Kowalczyk and E.A. Kraut, “Heterojunction band discontinuity growth sequence variation at compound semiconductor-germanium (110) interfaces: Possible role of antiphase disorder,” J. Vac. Sci. Technol. B, vol. 3, pp. 1295-1299, 1985.
[3.15] S. N. G., S. Nakahara, S. J. Pearton, T. Boone, S. M. Vernon, “Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon-on-insulator,” J. Appl. Phys. vol. 64, pp. 2981-2989, 1988.
[3.16] T. Takamoto, M. Kaneiwa, M. Imaizumi and M. Yamaguchi, “InGaP/GaAs-based multijunction solar cells,” Prog. Photovolt: Res. Appl., vol. 13, pp. 495-511, 2005.
[3.17] T. Takamoto, T. Agui, K. Kamimura and M. Kaneiwa, “Multijunction solar cell technologies - high efficiency, radiation resistance, and concentrator applications,” in Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, 2003, pp. 581-586.
[3.18] S. K. Agarwal, R. Tyagi, M. Singh, and R. K. Jain, “Effect of growth parameters on the MOVPE of GaAs/Ge for solar cell applications,” Sol. Energy Mater. Sol. Cells, vol. 59, pp. 19-26, 1999.
[3.19] L. Knuuttia, A. Lankinen, J. Likonen, H. Lipsanen, X. Lu, P. Mcnally, J. Riikonen and T. Tuomi, “Low Temperature Growth GaAs on Ge,” Jpn. J. Appl. Phys. vol. 44, pp. 7777-7784, 2005.
[3.20] M. K. Hudait, and S. B. Krupanidhi, “Self-annihilation of antiphase boundaries in GaAs epilayers on Ge substrates grown by metal-organic vapor-phase epitaxy,” J. Appl. Phys., vol. 89, pp. 5972-5979, 2001.
[3.21] M. K. Hudait, and S. B. Krupanidhi, “Atomic force microscopic study of surface morphology in Si-doped epi-GaAs on Ge substrates: effect of off-orientation,” Mater. Res. Bulletin, vol. 35, pp. 909-919, 2000.
[3.22] Q. X. U., J. W. P. Hsu, S. M. Ting, E. A. Fitzgerald, R. M. Sieg, S. A. Ringel, “Scanning force microscopy studies of GaAs films grown on offcut Ge substrates,” J. Electron. Mater., vol. 27, pp. 1010-1016, 1998.
[3.23] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice. Academic Press, New York, 1989.
[4.1] R. J. Chaffin, G. C. Osbourn, L.R. dawson, and R.M. Biefeld, “Strained Superlattice Quantum Well, Multijunction Photovoltaic Cell, ” in Proc. IEEE 17th Photovoltaic Specialists Conf., 1984, pp. 743-746.
[4.2] R. J. Chaffin, and G. C. Osbourn, “Quantum Well Multijunction Photovoltaic Cell” US Patent Number 4688068, 1987.
[4.3] K. W. J. Barnham, and G. Duggan, “A New Approach To High-Efficiency Multi-Band-Gap Solar Cells, ” J. Appl. Phys., vol. 67, pp. 3490-3493, 1990.
[4.4] N. G. Anderson, “On quantum well solar cell efficiencies,” Physica E, vol. 14, pp. 126-131, 2002.
[4.5] K. W. J. Barnham, I. Ballard, J. P. Connolly, N. J. Ekins-Daukes, B. G. Kluftinger, J. Nelson, and C. Rohr, “Quantum well solar cells,” Physica E, vol. 14, pp. 27-36, 2002.
[4.6] S. M. Ramey, and R. Khoie, “Modeling of multiple-quantum-well solar cells including capture, escape, and recombination of photoexcited carriers in quantum wells,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1179-1188, 2003.
[4.7] N. J. Ekins-Daukes, J. Zhang, D. B. Bushnell, K. W. J. Barnham, M. Mazzer, and J. S. Roberts, “Strain-balanced materials for high-efficiency solar cells,” in Proc. IEEE 28th Photovoltaics Specialist Conf., 2000, pp. 1273-1276.
[4.8] J. Nelson, M.Paxman, K.W.J.Barnham, J. S. Roberts, and C. Button, “Steady-State Carrier Escape From Single Quantum Wells,” IEEE J. of Quantum Electr., vol. 29, no. 6, pp. 1460-1468, 1993.
[4.9] D. J. Friedman, Sarah R. Kurtz, and J.F. Geisr, “ANALYSIS OF THE GaInP/GaAs/l-eV/Ge CELL AND RELATED STRUCTURES FOR TERRESTRIAL CONCENTRATOR APPLICATION,” in Proc. IEEE 29th Photovoltaics Specialist Conf., 2002, pp. 856-859.
[4.10] S. R. Kurtz, J. F. Klem, A. A. Allerman, R. M. Sieg, C. H. Seager, and E. D. Jones, “Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy,“ Appl. Phys. Lett., vol. 80, no. 8, pp. 1379-1381, 2002.
[4.11] S. Kurtz, J. F. Geisz, D. J. Friedman, A.J. Ptak. R.R. King, D.C. Law, and N.H. Karam, “Collection of photocarriers in Ga/sub 1-x/In/sub x/N/sub y/As/sub 1-y/ solar cells,” in Proc. IEEE 21th Photovoltaics Specialist Conf., 2005, pp. 707-710. pp. 856-859.
[4.12] J. M. Olson, “Growth and characterization of high efficiency III−V multijunction solar cells for terrestrial and space applications,” 10th European Workshop on MOVPE, 2003, pp. 8-11.
[4.13] K. W. J. Barnham, B. Braun, J. Nelson, M. Paxman, C. Button, J. S. Roberts, and C. T. Foxon, “Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device,” Appl. Phys. Lett., vol. 59, pp. 135-137, 1991.
[4.14] E. Aperathitis, Z. Hatzopoulos, M. Kayambaki, V. Foukaraki, M. Ruzinsky, V. Saly, P. Sirotny, A. C. Varonides, and P. Panayotatos, “1 cm×1 cm GaAs/AlGaAs MQW solar cells under one sun and concentrated sunlight,” in Proc. IEEE 28th Photovoltaics Specialist Conf., 2000, pp. 1142-1145.
[4.15] E. Aperathitis, C.G. Scott, D. Sands, V. Foukaraki, Z. Hatzopoulos, and P. Panayotatos, “Effect of temperature on GaAs:AlGaAs multiple quantum well solar cells,” Mater. Sci. Eng. B, vol. 51, pp. 85–89, 1998.
[4.16] H. Ohtsuka, T. Kitatani, Y. Yazawa, and T. Warabisako, “Numerical prediction of InGaAs/GaAs MQW solar cell characteristics under concentrated sunlight,” Sol. Energy Mater. Sol. Cells, vol.50, pp. 251-257, 1998.
[4.17] J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler. “Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces,” Appl. Phys. Lett., vol. 55, no. 12, pp. 1208-1210, 1989.
[4.18] D. Schlenker, T. Miyamoto, Z. Chen, and F. Koyama, K. Iga, “ Growth of highly strained GaInAs/GaAs quantum wells for 1.2 m wavelength lasers,“ J. Cryst. Growth, vol. 209, pp. 27-36, 2000.
[4.19] N. G. Anderson, and S. J. Wojtczuk, “Open-circuit voltage characteristics of InP-based quantum well solar cells,” J. Appl. Phys., vol. 79, pp. 1973-1978,1996.
[4.20] N. J. Ekins-Daukes, K, W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett., vol. 75, pp. 4195-4197, 1999.
[4.21] K. Barnham, J. Connolly, P. Griffin, G. Haarpaintner, J. Nelson, E. Tsui, A. Zachariou, J. Osborne, C. Button, G. Hill, M. Hopkinson, M. Pate, J. S. Roberts, and T. Foxon, “Voltage enhancement in quantum well solar cells,” J. Appl. Phys., vol. 80, pp. 1201-1206, 1996.
[4.22] M. Mazzer, E. Grunbaum, K. W. J. Barnham, J. Barnes, P. R. Griffin, D. B. Holt, J. L. Hutchinson, A. G. Norman, J. P. R. David, J. S. Roberts, and R. Grey, “Study of misfit dislocations by EBIC, CL and HRTEM in GaAs/InGaAs lattice-strained multi-quantum well p-i-n solar cells,” Mater. Sci. Eng. B, vol. 42, pp. 43-51, 1996.
[4.23] W. Shockley, and W. T. Read Jr., “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev., vol. 87, no. 5, pp. 835-842, 1952.
[4.24] N. J. Ekins-Daukes, J.M. Barnes, K.W.J. Barnham, J.P. Connolly, M. Mazzer, J.C. Clark, R. Grey, G. Hill, M.A. Pate, and J.S. Roberts, “Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells,” Sol. Energy Mater. Sol. Cells, vol. 68, pp. 71-87, 2001.
[5.1] N. J. Ekins-Daukes, J. Zhang, D. B. Bushnell, K. W. J. Barnham, M. Mazzer, and J. S. Roberts, “Strain-balanced materials for high-efficiency solar cells,” in Proc. IEEE 28th Photovoltaics Specialist Conf., 2000, pp. 1273-1276.
[5.2] S. M. Bedair, T. Katsuyama, M. Timmons, and M. A. Tischler. “A new GaAsP-InGaAs strained-layer super-lattice light-emitting diode,” IEEE Electron Device Lett.,vol. 5, no. 2, pp. 45-47, 1984.
[5.3] R. Hull, J. C. Bean, F. Cerdeira, A. T. Fiory, and J. M. Gibson, “Stability of semiconductor strain-layer superlattices,” Appl. Phys. Lett. vol. 48, pp. 56-58, 1986.
[5.4] J. E. Cunningham, K. W. Goossen, M. D. Williams, and W. Y. Jan, “Pseudomorphic InGaAs-GaAsP quantum well modulators on GaAs,” Appl. Phys. Lett. vol. 60 pp. 727-729, 1992.
[5.5] K. W. J. Barnham, I. Ballard, J. G. Connolly, N. Ekins-Daukes, B. G. Kluftinger, J. Nelson, C. Rohr, and M. Mazzer, “Recent results on quantum well solar cells,” J. Mater. Sci.-Mater Electron., vol. 11, pp. 531-536, 2000.
[5.6] D. J. Friedman, S.R. Kurtz, K.A. Bertness, A.E. Kibbler, C. Kramer, J.M. Olson, D.L. King, B.R. Hansen, and J.K. Snyder, “Accelerated publication 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell,” Prog. Photovolt. Res. Appl., vol. 3, pp. 47-50, 2007.
[5.7] T. Takamoto, E. Ikeda, H. Kurita and M. Ohmori “Over 30% efficient InGaP/GaAs tandem solar cells,” Appl. Phys. Lett., vol. 70, pp. 381-383, 1997.
[5.8] J. M. Olson, S. R. Kurtz, A. E. Kibbler, and P. Faine, “A 27.3% Efficient Ga0.5In0.5P/GaAs Tandem Solar Cell,” Appl. Phys. Lett., vol. 56, pp. 623-625 , 1990.
[5.9] T. Takamoto, M Yamaguchi, S. J. Taylor, E. Lkeda, T. Agui, and H. Kurita, “High-Efficiency Radiation Resistant InGaP/GaAs Tandem Solar Cells,” in Proc. IEEE 26thPhotovoltaic Specialists Conf., 1997, pp. 887-890.
[5.10] R. R. King, N. H. Karam, J.H.Ermer, M. Haddad, P. Colter, T. Lsshiki, H. Yoon, H. L. Cotal, D. E. Joslin, D. D. Krut, R. Sudharsanan, K. Edmondson, B. T. Cavicchi, and D. R. Lillington “Next-Generation, High-Efficiency III-V Multijunction solar cells,” in Proc. IEEE 28th Photovoltaics Specialist Conf., 2000, pp. 998-1001.
[5.11] T. Takamoto, T. Agui, K. Kamimura and M. Kaneiwa, “Multijunction Solar Cell Technologies-High Efficiency, Radiation Resistance, and Concentrator Applications,” in Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, 2003, pp. 581-586.
[5.12] B. Damilano, J. Barjon, S. W. Wan, J. Y. Duboz, M. Leroux, M. Laugt, and J. Massies, “(Ga,In)(N,As)-based solar cells grown by molecular beam epitaxy,” IEE Proc. Optoelectronic, vol. 151, pp. 433-436, 2004.
[5.13] F. Dimroth, C. Baur, A.W. Bett, K. Volz, and W. Stolz, “Comparison of dilute nitride growth on a single-and 8 x 4-inch multiwafer MOVPE system for solar cell applications,” J. Cryst. Growth, vol. 272, pp. 726-731, 2004.
[5.14] N. Y. Li, P. R. Sharps, M. Stan, F. Newman, J. S. Hills, H. Q. Hou, J. M. Gee, and D. J. Ai ken, “Development of 1.25 eV InGaAsN for triple junction solar cells” in Proc. IEEE 28th Photovoltaic Specialists Conf., 2000, pp. 986-989.
[5.15] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “ InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett., vol. 74, pp. 729-731, 1999.
[5.16] S. R. Kurtz, D. Myers, and J. M. Olson, “Projected Performance of Three- and Four-Junction Devices using GaAs and GalnP,” in Proc. IEEE 26th Photovoltaic Specialists Conf., 1997, pp.878-878.
[5.17] S. Kurtz, J. F. Geisz, D. J. Friedman, J. M. Olson, and A. Duda “Modeling of Electron Diffusion Length in GalnAsN Solar Cells, ” in Proc. IEEE 28th Photovoltaic Specialist Conf., 2000, pp. 1210-1213.
[5.18] S. R. Kurtz, J. F. Klem, A. A. Allerman, R. M. Sieg, C. H. Seager and E. D. Jones, “Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 80, pp. 1379-1381, 2002.
[5.19] S. R. Kurtz, J. F. Klem, A. A. Allerman, R. M. Sieg, C. H. Seager, and E. D. Jones “Minority carrier diffusion and defects in InGaAsN grown by molecular beam epitaxy,” Appl. Phys. Lett.,vol.80, pp 1379-1381, 2002
[5.20] P. R. Griffin, J. Barnes, K. W. J. Barnham, G. Haarpaintner, M. Mazzer, C. Zanotti-Fregonara, E. Gru¨nbaum, C. Olsonb, C. Rohr, J. P. R. David, J. S. Roberts, R. Grey, and M. A. Pate, “Effect of strain relaxation on forward bias dark currents in GaAs/InGaAs multiquantum well p-i-n diodes,” J. Appl. Phys., vol. 80, no. 10, pp. 5815-5820, 1996.
[5.21] N. G. Anderson, and S. J. Wojtczuk, “Open-circuit voltage characteristics of InP-based quantum well solar cells,” J. Appl. Phys., vol. 79, pp. 1973-1978, 1996.
[5.22] P. J. Orders, and B. F. Usher 1987 “Determination of critical layer thickness in InGaAs/GaAs hetrostures by x-ray diffraction,” Appl. Phys. Lett., vol. 50, pp. 980-982, 1987.
[6.1] M. A. Green. “Two new efficient crystalline silicon light-trapping textures,” Prog. Photovolt. Res. Appl., vol. 7, no. 4, pp. 317-320, 1999.
[6.2] F. C. Marques, “Sprayed SnO Antireflection Coating on Textured Silicon Surface for Solar Cell Applications,” IEEE Trans. Electron Devices, vol. 45, no. 7, pp.1619-1622, 1998.
[6.3] A. Mihi and H. Mı´guez, “Origin of Light-Harvesting Enhancement in Colloidal-Photonic-Crystal-Based Dye-Sensitized Solar Cells,” J. Phys. Chem. B, vol. 109, pp. 15968-15976, 2005.
[6.4] A. Mihi, F. J. López-Alcaraz, and H. Míguez, “Full spectrum enhancement of the light harvesting efficiency of dye sensitized solar cells by including colloidal photonic crystal multilayers,” Appl. Phys. Lett., vol. 88, pp. 193110-1-193110-3, 2006.
[6.5] L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling and B. A. Alamariu, ”Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett., vol. 89, pp.111111-1-111111-3, 2006.
[6.6] M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett., vol. 91, pp. 081118-1-081118-3, 2007.
[6.7] E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices, vol. 29, pp. 300-305, 1982.
[6.8] Jenny Nelson, THE PHYSICS OF SOLAR CELLS. Imperial College press, 2003 p. 272.
[6.9] C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang and T. M. Hsu, “Self-assembled free-standing colloidal crystals,” Nanotechnology, vol. 16, pp. 1440–1444, 2005.
[6.10] H. Miguez, C. Lopez, F. Meseguer, A. Blanco, L. Vazquez, R. Mayoral, M. Ocan˜a, V. Fornes and A. Mifsud, “Photonic crystal properties of packed submicrometric SiO2 spheres,” Appl. Phys. Lett., vol. 71, no. 9, pp. 1148-1150, 1997.