簡易檢索 / 詳目顯示

研究生: 粘友明
Nian, You-Ming
論文名稱: 膽紅素模版材料之等溫吸附建模及選擇性探討
The investigation of adsorption isothem model and binding specificity of bilirubin imprinted material
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 110
中文關鍵詞: 吸附動力模式選擇性膽紅素功能性單體模版分子分子模版高分子
外文關鍵詞: bilirubin, functional monomer, molecularly imprinted polymer, template molecule, adsorption kinetic model, selectivity
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子模版高分子 (Molecularly imprinted polymers;MIP) 乃是藉以欲分析物或稱模版分子 (template) 先與功能性單體 (functional monomer) 形成以鍵結作用力吸引的複合物型態;聚合時,單體圍繞模版分子,同時加入交聯劑 (crosslinker) 將模版分子固定化。經溶劑萃取方式將高分子內之模版分子洗出,以形成多孔性可辨識區域,即可製備出對欲分析物具有優異親和性及特異選擇性之高分子。
    本實驗以判定黃疸之指標性分子,膽紅素作為模版分子,以甲基丙烯酸 (Methacrylic acid;MAA) 及乙二醇二甲基丙烯酸酯 (ethyleneglycol dimethacrylate;EGDMA) 分別作為功能性單體及交聯劑,並加入偶氮異二丁腈 (2,2’-azo-bisisobutyronitrile;AIBN) 起始劑進行熱聚合。製備完成之聚合物以EDTA/NaOH萃洗液萃取包埋於內之膽紅素模版分子,以形成具有辨識膽紅素之孔洞。並藉由比表面積測定 (Brunauer-Emmett-Teller analyzer;BET)、掃瞄式電子顯微鏡 (scanning electron microscope;SEM) 分別進行膽紅素模版高分子之物性測定與表面觀察。膽紅素分子極易因光和氧氣而氧化,故首先探討EDTA/NaOH背景溶液及膽紅素溶液之穩定性。
    本研究亦針對膽紅素模版高分子於單成份與多成份混合溶液系統中對膽紅素之吸附選擇性進行討論;並對MIP於單成份及雙成份混合溶液中之吸附動力予以探討,由此進一步建立吸附模式,求取其模式參數並予以討論。除此之外,亦探討加入鹽類對MIP吸附膽紅素之影響。MIP於多成份混合溶液系統下對膽紅素及共存物 (黃體酮、睪固酮、膽固醇) 之吸附選擇性亦予以討論,並延伸多成份系統至真實血清溶液中,且建立MIP對膽紅素之吸附檢量線。

    Molecularly imprinted polymer (MIP) was prepared by the interaction between the analyte or the template molecule and the functional monomer. During the polymerization, the cross-linker was added to confine the template molecule. Later, the template bound within the MIP was extracted by the utilization of solvent, the cavities as the recognition sites were thus formed. In this way, the MIP being made can have superior affinity and specificity towards the analyte.
    In this research, bilirubin, being the index for jaundice, was used as the template molecule. Methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) were used as the functional monomer and cross-linker, respectively. 2,2’-azo-bisisobutyronitrile (AIBN) was added to initiate the thermal polymerization. The MIP thus prepared was then washed by EDTA/NaOH solution for the extraction of bilirubin template molecules. Specific surface area analysis (Brunauer-Emmett-Teller analyzer; BET) and scanning electron microscope (SEM) were used to measure MIP’s physical properties as well as to observe its surface morphology. How the EDTA/NaOH solution affected the stability of bilirubin was investigated. The binding specificities of the MIP in the single solution and binary mixture were compared and discussed. The adsorption isotherm as well as the kinetic model was established. The parameters in the model were obtained and compared. The influence of salt for the adsorption performance was also discussed. The binding specificity of the MIP in triple mixture solution was further investigated. In addition, the serum samples were prepared to establish the calibration of bilirubin concentration via the adsorption of the MIPs.

    表目錄I 圖目錄II 第一章 緒論1 1-1 生物感測器的種類1 1-2 分子模版高分子發展及理論3 1-3 分子模版高分子之製作4 1-3-1 製作原理4 1-3-2 功能性單體 (Functional monomers)7 1-3-3 交聯劑 (Crosslinker)7 1-3-4 聚合方式8 1-3-5 溶劑9 1-3-6 模版分子之萃取10 1-3-7 分子模版高分子在各領域之應用10 1-4 膽紅素分子模版高分子之製備14 1-4-1 功能性單體-甲基丙烯酸17 1-4-2 交聯劑-乙二醇二甲基丙烯酸酯17 1-4-3 起始劑-偶氮異二丁腈17 1-4-4 模版分子-膽紅素IXα18 1-5 黃疸 (Jaundice) 及膽紅素 (bilirubin) 之認識19 1-5-1 膽紅素之製造與代謝 (Intestinal phase of bilirubin metabolism)19 1-5-2 膽紅素之化學檢驗21 1-6 膽紅素之三維立體構形分析22 1-6-1 膽紅素之光學異構化及光氧化機制23 1-7 研究動機25 第二章 實驗方法與材料27 2-1 膽紅素穩定度實驗27 2-1-1 EDTA/NaOH與ascorbic acid/NaOH之pH穩定性測試27 2-1-2 膽紅素於EDTA/NaOH或ascorbic acid/NaOH背景溶劑下之穩定性比較27 2-1-3 藍光照射對膽紅素之影響27 2-1-4 氧氣對膽紅素之影響27 2-2 膽紅素模版高分子之聚合方法27 2-3 各組成份析方法28 2-3-1 膽紅素濃度定量測定方法及檢量線28 2-3-2 膽綠素及steroids系列之定量測定方法及檢量線29 2-4 膽紅素模版高分子之膽紅素萃出方法34 2-5 離子強度對吸附之影響實驗34 2-5-1 鹽類對模版高分子吸附膽紅素之影響34 2-5-2 增加鹽類濃度對模版高分子吸附膽紅素之影響34 2-6 膽紅素模版高分子之重複使用實驗34 2-7 模版高分子於多成份系統下之選擇性實驗37 2-8 膽紅素和膽綠素之吸附動力實驗37 2-8-1 單一組成溶液下膽紅素和膽綠素之吸附平衡時間37 2-8-2 單一組成溶液下膽紅素和膽綠素之吸附動力實驗38 2-8-3 雙組成溶液下膽紅素和膽綠素之吸附動力實驗38 2-8-4 模版高分子吸附動力之模式建立38 2-9 模版高分子對血清中膽紅素之吸附39 2-9-1 膽紅素於血清中之檢量線39 2-9-2 模版高分子於血清中對膽紅素之吸附平衡時間39 2-9-3 模版高分子於血清中對膽紅素之吸附檢量線39 2-10 以 β-cyclodextrin (β-CD) 為基材製備膽紅素模版高分子對膽紅素之吸附40 2-11 實驗藥品41 2-12 實驗儀器43 第三章 結果與討論44 3-1 膽紅素穩定度實驗44 3-1-1 EDTA/NaOH與ascorbic acid/NaOH之pH穩定性測試44 3-1-2 膽紅素於EDTA/NaOH與ascorbic acid/NaOH背景溶劑中之穩定性46 3-1-3 藍光照射對膽紅素之影響48 3-1-4 氧氣對膽紅素之影響51 3-2 膽紅素模版高分子之物性54 3-2-1 BET54 3-2-2 SEM54 3-3 膽紅素模版高分子之吸附57 3-3-1 膽紅素模版高分子之吸附平衡時間57 3-3-2 膽紅素模版高分子之選擇性57 3-4 比較以不同材質製備膽紅素模版高分子之可行性61 3-4-1 使用 β-cyclodextrin材質製備膽紅素模版高分子61 3-4-2 Poly(β-CD) MIP與PMAA MIP吸附之比較61 3-5 膽紅素分子模版高分子之重複使用65 3-6 離子強度對吸附之影響實驗67 3-6-1 鹽類對MIP吸附膽紅素之影響67 3-6-2 增加鹽類濃度對模版高分子吸附膽紅素之影響68 3-7 MIP於多成份系統下之選擇性實驗70 3-7-1 混合溶液組成簡介71 3-7-2 MIP於混合溶液中對各成份之選擇性73 3-8 模版高分子對血清中膽紅素之吸附77 3-8-1 MIP對血清膽紅素之吸附平衡時間77 3-8-2 MIP於血清中對膽紅素之吸附檢量線77 3-9 膽紅素和膽綠素之吸附動力實驗82 3-9-1 單一組成溶液下膽紅素和膽綠素之平衡吸附時間82 3-9-2 單一組成溶液下膽紅素和膽綠素之吸附動力實驗82 3-9-3 MIP於雙組成溶液下膽紅素和膽綠素之吸附動力實驗88 3-10 吸附動力之建模95 3-10-1 模式之選擇與建立95 3-10-2 MIP於雙成份系統下吸附動力模式之建立99 第四章 重點整理105 第五章 結論107 參考文獻108

    1. H. S. Ji, S. McNiven, K. Ikebukuro, I. Karube, “Selective piezoelectric odor sensors using molecularly imprinted polymers”, Analytica Chimica Acta, 390, pp. 93-100, 1999.
    2. Y. Tan, H. Peng, C. Liang, S. Yao, “A new assay system for phenacetin using biomimic bulk acoustic wave sensor with a molecularly imprinted polymer coating”, Sensors and Actuators B, 73, pp. 179-184, 2001.
    3. F. L. Dickert, P. Lieberzeit, M. Tortschanoff, “Moleculat imprints as artificial antibodies- a new generation of chemical sensors”, Sensors and Actuators B, 65, pp. 186-189, 2000.
    4. P. A. G. Cormack and K. Mosbach, “Molecular imprinting: recent developments and the road ahead”, Reactive & Functional Polymers, 41, pp. 115–124, 1999.
    5. G. Wulff and A. Sarhan, “The use of polymers with enzyme-analogous structures for the resolution of racemates”, Angewandte Chemie International Edition, 11, pp. 341, 1972.
    6. L. Andersson, G. Sellergron and K. Mosbach, “Imprinting of amino acid derivatives in macroporous polymers”, Tetrahedron Letter, 25, pp. 521-529 , 1984.
    7. V. P. Joshi, M. G. Kulkarni and R. A. Mashelkar, “Molecularly imprinted adsorbrents for positional isomer separation”, Journal of Chromatography A, 849, pp. 319-330, 1999.
    8. O. Ramström and K. Mosbach, “Synthesis and catalysis by molecularly imprinted materials”, Current Opinion in Chemical Biology, 3, pp. 759–764, 1999.
    9. M. J. Whitcombe, C. Alexander and E. N. Vulfson, “Smart polymers for the food industry”, Trends in Food Science & Technology, 8, pp. 140-145, 1997.
    10. M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake and I. Willner, “Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors”, Analytical Chemistry, 73, pp. 720-723, 2001.
    108
    11. G. Vlatakis, L. I. Andersson, R. Müller and K. Mosbach, “Drug assay using antibody mimics made by molecular imprinting”, Nature, 361, pp. 645-647, 1993.
    12. D. A. Spivak and K. J. Shea, “Binding of nucleotide bases by imprinted polymers”, Macromolecules, 31, pp. 2160-2165, 1998.
    13. M. Kempe, “Antibody-Mimicking polymers as chiral stationary phases in HPLC”, Analytical Chemistry, 68(11), pp. 1948-1953, 1996.
    14. M. Kempe and K. Mosbach, “Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases”, Journal of Chromatography, 691, pp. 317-323, 1995.
    15. D. Kriz, C. BerggrenKriz, L. I. Andersson and K. Mosbach, “Thin-layer chromatography based on the molecular imprinting technique”, Analytical Chemistry, 66, pp. 2636-2639, 1994.
    16. B. Bjarnason, L. Chimuka and O. Ramstrvm, “On-Line Solid-Phase Extraction of Triazine Herbicides Using a Molecularly Imprinted Polymer for Selective Sample Enrichment”, Analytical Chemistry, 71(11), pp. 2152-2156, 1999.
    17. M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol”, Journal of the American Chemical Society, 117(27), pp. 7105-7111, 1995.
    18. A. Leonhardt and K. Mosbach, “Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions”, Reactive polymers, ion exchangers, sorbents, 6, pp. 285-290, 1987.
    19. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube and Y. P. Parhometz, “Atrazine sensing by molecularly imprinted membranes”, Biosensors and Bioelectronics, 10, pp. 959-964, 1995.
    20. D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”, Analytica Chimica Acta, 300, pp. 71-75, 1994.
    21. C. Malitesta, I. Losito and P. G. Zambonin, “Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors”, Analytical Chemistry, 71, pp. 1366-1370, 1999.
    109
    22. B. Sellergren, M. Lepistö and K. Mosbach, “Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition”, Journal of the American Chemical Society, 110, pp. 5853-5860, 1988.
    23. D. A. Lightner and A. F. McDonagh, “Molecular mechanisms of phototherapy for neonatal jaundice”, Accounts of Chemical Research, 13, pp. 417-424, 1984. 24. T. R. Harrison et. al., Harrison's principles of internal medicine, 12th Ed. McGraw-Hill, New York, pp. 264-269, 1991.
    25. D. Watson, “Analytic methods for bilirubin in blood plasma”, Clinical Chemistry, 7(6), pp. 603-625, 1961.
    26. R. V. Person, B. R. Peterson and D. A. Lightner, “Bilirubin conformational analysis and circular dichroism", Journal of the American Chemical Society, 116, pp. 42-59, 1994.
    27. B. Sellergren and K. J. Shea, “Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases”, Journal of Chromatography A, 690, pp. 29-39, 1995.
    28. T. P. Delaney and V. M. Mirsky, “capacitive creatinine sensor based on a photografted molecularly imprinted polymer”, Electroanalysis, 14(3), pp. 221-224, 2002.
    29. P. Sajonz, M. Kele, G. Zhong and B. Sellergren, “Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase”, Journal of Chromatography A, 810, pp. 1-17, 1998.
    30. J. Fog and B. Bugge-Asperheim, “Stability of bilirubin”, Nature, 203, pp. 756-757, 1964.
    31. R. M. C. Dswson, “Data for biochemical research, 3rd Ed.”, New York, pp. 220-221, 1986.
    32. T. Hishiya, M. Shibata, M. Kakazu, H. Asanuma and M. Komiyama, “Molecularly imprinted cyclodextrins as selective receptors for steroids”, Macromolecules, 32, pp. 2265-2269, 1999.
    33. X. B. Zhao, B. L. He and P. L. Ho, “Sorption of unconjugated bilirubin by means of novel immobilized β-cyclodextrin polymers”, Reactive polymers, 24, pp. 1-8, 1994.

    下載圖示 校內:2008-07-18公開
    校外:2008-07-18公開
    QR CODE