| 研究生: |
粘友明 Nian, You-Ming |
|---|---|
| 論文名稱: |
膽紅素模版材料之等溫吸附建模及選擇性探討 The investigation of adsorption isothem model and binding specificity of bilirubin imprinted material |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 吸附動力模式 、選擇性 、膽紅素 、功能性單體 、模版分子 、分子模版高分子 |
| 外文關鍵詞: | bilirubin, functional monomer, molecularly imprinted polymer, template molecule, adsorption kinetic model, selectivity |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子模版高分子 (Molecularly imprinted polymers;MIP) 乃是藉以欲分析物或稱模版分子 (template) 先與功能性單體 (functional monomer) 形成以鍵結作用力吸引的複合物型態;聚合時,單體圍繞模版分子,同時加入交聯劑 (crosslinker) 將模版分子固定化。經溶劑萃取方式將高分子內之模版分子洗出,以形成多孔性可辨識區域,即可製備出對欲分析物具有優異親和性及特異選擇性之高分子。
本實驗以判定黃疸之指標性分子,膽紅素作為模版分子,以甲基丙烯酸 (Methacrylic acid;MAA) 及乙二醇二甲基丙烯酸酯 (ethyleneglycol dimethacrylate;EGDMA) 分別作為功能性單體及交聯劑,並加入偶氮異二丁腈 (2,2’-azo-bisisobutyronitrile;AIBN) 起始劑進行熱聚合。製備完成之聚合物以EDTA/NaOH萃洗液萃取包埋於內之膽紅素模版分子,以形成具有辨識膽紅素之孔洞。並藉由比表面積測定 (Brunauer-Emmett-Teller analyzer;BET)、掃瞄式電子顯微鏡 (scanning electron microscope;SEM) 分別進行膽紅素模版高分子之物性測定與表面觀察。膽紅素分子極易因光和氧氣而氧化,故首先探討EDTA/NaOH背景溶液及膽紅素溶液之穩定性。
本研究亦針對膽紅素模版高分子於單成份與多成份混合溶液系統中對膽紅素之吸附選擇性進行討論;並對MIP於單成份及雙成份混合溶液中之吸附動力予以探討,由此進一步建立吸附模式,求取其模式參數並予以討論。除此之外,亦探討加入鹽類對MIP吸附膽紅素之影響。MIP於多成份混合溶液系統下對膽紅素及共存物 (黃體酮、睪固酮、膽固醇) 之吸附選擇性亦予以討論,並延伸多成份系統至真實血清溶液中,且建立MIP對膽紅素之吸附檢量線。
Molecularly imprinted polymer (MIP) was prepared by the interaction between the analyte or the template molecule and the functional monomer. During the polymerization, the cross-linker was added to confine the template molecule. Later, the template bound within the MIP was extracted by the utilization of solvent, the cavities as the recognition sites were thus formed. In this way, the MIP being made can have superior affinity and specificity towards the analyte.
In this research, bilirubin, being the index for jaundice, was used as the template molecule. Methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) were used as the functional monomer and cross-linker, respectively. 2,2’-azo-bisisobutyronitrile (AIBN) was added to initiate the thermal polymerization. The MIP thus prepared was then washed by EDTA/NaOH solution for the extraction of bilirubin template molecules. Specific surface area analysis (Brunauer-Emmett-Teller analyzer; BET) and scanning electron microscope (SEM) were used to measure MIP’s physical properties as well as to observe its surface morphology. How the EDTA/NaOH solution affected the stability of bilirubin was investigated. The binding specificities of the MIP in the single solution and binary mixture were compared and discussed. The adsorption isotherm as well as the kinetic model was established. The parameters in the model were obtained and compared. The influence of salt for the adsorption performance was also discussed. The binding specificity of the MIP in triple mixture solution was further investigated. In addition, the serum samples were prepared to establish the calibration of bilirubin concentration via the adsorption of the MIPs.
1. H. S. Ji, S. McNiven, K. Ikebukuro, I. Karube, “Selective piezoelectric odor sensors using molecularly imprinted polymers”, Analytica Chimica Acta, 390, pp. 93-100, 1999.
2. Y. Tan, H. Peng, C. Liang, S. Yao, “A new assay system for phenacetin using biomimic bulk acoustic wave sensor with a molecularly imprinted polymer coating”, Sensors and Actuators B, 73, pp. 179-184, 2001.
3. F. L. Dickert, P. Lieberzeit, M. Tortschanoff, “Moleculat imprints as artificial antibodies- a new generation of chemical sensors”, Sensors and Actuators B, 65, pp. 186-189, 2000.
4. P. A. G. Cormack and K. Mosbach, “Molecular imprinting: recent developments and the road ahead”, Reactive & Functional Polymers, 41, pp. 115–124, 1999.
5. G. Wulff and A. Sarhan, “The use of polymers with enzyme-analogous structures for the resolution of racemates”, Angewandte Chemie International Edition, 11, pp. 341, 1972.
6. L. Andersson, G. Sellergron and K. Mosbach, “Imprinting of amino acid derivatives in macroporous polymers”, Tetrahedron Letter, 25, pp. 521-529 , 1984.
7. V. P. Joshi, M. G. Kulkarni and R. A. Mashelkar, “Molecularly imprinted adsorbrents for positional isomer separation”, Journal of Chromatography A, 849, pp. 319-330, 1999.
8. O. Ramström and K. Mosbach, “Synthesis and catalysis by molecularly imprinted materials”, Current Opinion in Chemical Biology, 3, pp. 759–764, 1999.
9. M. J. Whitcombe, C. Alexander and E. N. Vulfson, “Smart polymers for the food industry”, Trends in Food Science & Technology, 8, pp. 140-145, 1997.
10. M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake and I. Willner, “Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors”, Analytical Chemistry, 73, pp. 720-723, 2001.
108
11. G. Vlatakis, L. I. Andersson, R. Müller and K. Mosbach, “Drug assay using antibody mimics made by molecular imprinting”, Nature, 361, pp. 645-647, 1993.
12. D. A. Spivak and K. J. Shea, “Binding of nucleotide bases by imprinted polymers”, Macromolecules, 31, pp. 2160-2165, 1998.
13. M. Kempe, “Antibody-Mimicking polymers as chiral stationary phases in HPLC”, Analytical Chemistry, 68(11), pp. 1948-1953, 1996.
14. M. Kempe and K. Mosbach, “Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases”, Journal of Chromatography, 691, pp. 317-323, 1995.
15. D. Kriz, C. BerggrenKriz, L. I. Andersson and K. Mosbach, “Thin-layer chromatography based on the molecular imprinting technique”, Analytical Chemistry, 66, pp. 2636-2639, 1994.
16. B. Bjarnason, L. Chimuka and O. Ramstrvm, “On-Line Solid-Phase Extraction of Triazine Herbicides Using a Molecularly Imprinted Polymer for Selective Sample Enrichment”, Analytical Chemistry, 71(11), pp. 2152-2156, 1999.
17. M. J. Whitcombe, M. E. Rodriguez, P. Villar and E. N. Vulfson, “A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: Synthesis and characterization of polymeric receptors for cholesterol”, Journal of the American Chemical Society, 117(27), pp. 7105-7111, 1995.
18. A. Leonhardt and K. Mosbach, “Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions”, Reactive polymers, ion exchangers, sorbents, 6, pp. 285-290, 1987.
19. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube and Y. P. Parhometz, “Atrazine sensing by molecularly imprinted membranes”, Biosensors and Bioelectronics, 10, pp. 959-964, 1995.
20. D. Kriz and K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”, Analytica Chimica Acta, 300, pp. 71-75, 1994.
21. C. Malitesta, I. Losito and P. G. Zambonin, “Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors”, Analytical Chemistry, 71, pp. 1366-1370, 1999.
109
22. B. Sellergren, M. Lepistö and K. Mosbach, “Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition”, Journal of the American Chemical Society, 110, pp. 5853-5860, 1988.
23. D. A. Lightner and A. F. McDonagh, “Molecular mechanisms of phototherapy for neonatal jaundice”, Accounts of Chemical Research, 13, pp. 417-424, 1984. 24. T. R. Harrison et. al., Harrison's principles of internal medicine, 12th Ed. McGraw-Hill, New York, pp. 264-269, 1991.
25. D. Watson, “Analytic methods for bilirubin in blood plasma”, Clinical Chemistry, 7(6), pp. 603-625, 1961.
26. R. V. Person, B. R. Peterson and D. A. Lightner, “Bilirubin conformational analysis and circular dichroism", Journal of the American Chemical Society, 116, pp. 42-59, 1994.
27. B. Sellergren and K. J. Shea, “Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases”, Journal of Chromatography A, 690, pp. 29-39, 1995.
28. T. P. Delaney and V. M. Mirsky, “capacitive creatinine sensor based on a photografted molecularly imprinted polymer”, Electroanalysis, 14(3), pp. 221-224, 2002.
29. P. Sajonz, M. Kele, G. Zhong and B. Sellergren, “Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase”, Journal of Chromatography A, 810, pp. 1-17, 1998.
30. J. Fog and B. Bugge-Asperheim, “Stability of bilirubin”, Nature, 203, pp. 756-757, 1964.
31. R. M. C. Dswson, “Data for biochemical research, 3rd Ed.”, New York, pp. 220-221, 1986.
32. T. Hishiya, M. Shibata, M. Kakazu, H. Asanuma and M. Komiyama, “Molecularly imprinted cyclodextrins as selective receptors for steroids”, Macromolecules, 32, pp. 2265-2269, 1999.
33. X. B. Zhao, B. L. He and P. L. Ho, “Sorption of unconjugated bilirubin by means of novel immobilized β-cyclodextrin polymers”, Reactive polymers, 24, pp. 1-8, 1994.