| 研究生: |
鄭惠文 Cheng, Hui-wen |
|---|---|
| 論文名稱: |
利用基因沉默及功能性蛋白質體學方法研究內生性galectin-1於口腔癌癌化過程中扮演的角色 The role of intracellular galectin-1 in oral cancer progression by gene silencing and functional proteomics |
| 指導教授: |
靳應臺
Jin, Ying-tai 陳玉玲 Chen, Yuh-ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 口腔癌 、蛋白質體學 、基因沉默 |
| 外文關鍵詞: | oral cancer, tandem affinity purification, gene silencing, galectin-1 |
| 相關次數: | 點閱:125 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Galectin-1(Gal-1)屬β-galactoside-binding animal lectins家族的一員,已知參與腫瘤細胞的轉型、附著、遷移及避開免疫攻擊等反應,Gal-1在口腔癌前期會大量表現在腫瘤附近的間質組織(tumor-associated stroma)及侵犯前緣與轉移至淋巴結的腫瘤細胞,並與前期口腔癌的預後有關。基於這些和腫瘤生物息息相關的反應,本研究利用基因沉默(gene silencing)的方法去探討細胞裡內生性Gal-1對於口腔癌的發展過程及其生物活性,發現抑制細胞體內的Gal-1會促進口腔癌細胞的生長、增加細胞週期S期的量、抑制細胞的遷移、及降低MMP-2及MMP-9蛋白活性的表現;且降低Gal-1的表現量可減少small GTPase cdc42的活化而明顯改變細胞表面filopodia的形態與數量進而抑制細胞的遷移。接著利用Tandem affinity purification (TAP)純化策略與質譜學(mass spectrometry, MS)的方法找出和Gal-1有交互作用的蛋白質Disheveled-associated activator of morphogenesis 1 (Daam1)和histone H4,雖然免疫共沉澱法(Coimmunoprecipitation)及哺乳動物雙雜交系統(mammalian two-hybrid)未能證明Gal-1和histone H4及Daam1有交互作用,但我們的結果卻發現到Gal-1和Daam1蛋白在細胞內的表現量是有正相關,且免疫螢光染色法(Immunocytometry)也指出Gal-1及Daam1在細胞內有colocalized,顯示Gal-1和Daam1之間的互動和口腔癌的發展過程有關聯,釐清細胞內Gal-1和Daam1的蛋白質聯絡網絡將有助於定位Gal-1於口腔癌細胞的增生及細胞遷移所扮演的角色。
Galectin-1(Gal-1) is a β-galactoside-binding lectin and involved in multiple biological functions, such as cell adhesion, proliferation, migration, apoptosis, inflammation, tumor progression and metastasis. Our previous investigations have shown that Gal-1 was overexpressed in the tumor-associated stroma as well as the invasion front during early oral carcinogenesis and correlated with worse prognosis of oral cancer. In this study we used siRNA of Gal-1 to determine the function of intracellular Gal-1. We found that silencing Gal-1 stimulates proliferation, increases cell cycle S phase, inhibits cell migration, and decreases the expression of MMP-2 and MMP-9. The migration inhibition of silencing Gal-1 might be due to the inhibition of small GTPase cdc42 activity and cytoskeleton rearrangement and significant decrease in the length and number of filopodia. Next, using a tandem affinity purification (TAP) method to purify the protein complex of Gal-1 and subsequent mass spectrometry to identify the associated proteins. Disheveled-associated activator of morphogenesis 1 (Daam1) and Histone H4 proteins were first identified as Gal-1 associated proteins by such approaches. Co-immunoprecipitation and mammalian two-hybrid analysis did not demonstrate that Gal-1 interacted with histone H4 and Daam1. However, Gal-1 was strongly sub-cellular colocalized with Daam1, and the expression of Daam1 was significantly decreased while gal-1 was silencing. These results implied that Daam1 might have a role in Gal-1-regulated cell functions. To further clarify the interacting network of Gal-1 and Daam1 might help to gain insight into the Gal-1 functions in oral carcinogenesis.
1. Renner G. Small cell carcinoma of the head and neck: a review. Seminars in oncology 2007;34(1):3-14.
2. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 1995;24(10):450-3.
3.Yang YY, Koh LW, Tsai JH, et al. Involvement of viral and chemical factors with oral cancer in Taiwan. Japanese journal of clinical oncology 2004;34(4):176-83.
4. Lo WY, Tsai MH, Tsai Y, et al. Identification of over-expressed proteins in oral squamous cell carcinoma (OSCC) patients by clinical proteomic analysis. Clinica chimica acta; international journal of clinical chemistry 2007;376(1-2):101-7.
5. Kilpatrick DC. Animal lectins: a historical introduction and overview. Biochimica et biophysica acta 2002;1572(2-3):187-97.
6. Cooper DN. Galectinomics: finding themes in complexity. Biochimica et biophysica acta 2002;1572(2-3):209-31.
7. Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nature reviews 2005;5(1):29-41.
8. Cho M, Cummings RD. Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. The Journal of biological chemistry 1995;270(10):5198-206.
9. Thijssen VL, Postel R, Brandwijk RJ, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proceedings of the National Academy of Sciences of the United States of America 2006;103(43):15975-80.
10. Rabinovich GA. Galectin-1 as a potential cancer target. British journal of cancer 2005;92(7):1188-92.
11. He QY, Chen J, Kung HF, Yuen AP, Chiu JF. Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics 2004;4(1):271-8.
12. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-11.
13. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease
in the initiation step of RNA interference. Nature 2001;409(6818):363-6.
14. Hutvagner G, Zamore PD. RNAi: nature abhors a double-strand. Current opinion in
genetics & development 2002;12(2):225-32.
15. Masiero M, Nardo G, Indraccolo S, Favaro E. RNA interference: implications for
cancer treatment. Molecular aspects of medicine 2007;28(1):143-66.
16. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to
interferons. Annual review of biochemistry 1998;67:227-64.
17. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of
21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature
2001;411(6836):494-8.
18. Tuschl T. Expanding small RNA interference. Nature biotechnology 2002;20(5):446-8.
19. Novina CD, Murray MF, Dykxhoorn DM, et al. siRNA-directed inhibition of HIV-1
infection. Nature medicine 2002;8(7):681-6.
20. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein
purification method for protein complex characterization and proteome exploration
. Nature biotechnology 1999;17(10):1030-2.
21. Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method: a
general procedure of protein complex purification. Methods (San Diego, Calif
2001;24(3):218-29.
22. Chiang WF, Liu SY, Fang LY, et al. Overexpression of galectin-1 at the tumor invasion
front is associated with poor prognosis in early-stage oral squamous cell carcinoma.
Oral Oncol 2007.
23. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature
2002;420(6916):629-35.
24. Xiao X, Liu D, Tang Y, et al. Development of proteomic patterns for detecting lung
cancer. Disease markers 2003;19(1):33-9.
25. Wulfkuhle JD, McLean KC, Paweletz CP, et al. New approaches to proteomic analysis
of breast cancer. Proteomics 2001;1(10):1205-15.
26. Labugger R, Simpson JA, Quick M, et al. Strategy for analysis of cardiac troponins in
biological samples with a combination of affinity chromatography and mass
spectrometry. Clinical chemistry 2003;49(6 Pt 1):873-9.
27. Tagwerker C, Flick K, Cui M, et al. A tandem affinity tag for two-step purification
under fully denaturing conditions: application in ubiquitin profiling and protein
complex identification combined with in vivocross-linking. Mol Cell Proteomics
2006;5(4):737-48.
28. Clerch LB, Whitney P, Hass M, et al. Sequence of a full-length cDNA for rat lung
beta-galactoside-binding protein: primary and secondary structure of the lectin.
Biochemistry 1988;27(2):692-9.
29. Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding
proteins. Biochimica et biophysica acta 1999;1473(1):172-85.
30. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F. Introduction to galectins.
Glycoconjugate journal 2004;19(7-9):433-40.
31.Cooper DN, Barondes SH. Evidence for export of a muscle lectin from cytosol to
extracellular matrix and for a novel secretory mechanism. The Journal of cell biology
1990;110(5):1681-91.
32. Mehul B, Hughes RC. Plasma membrane targetting, vesicular budding and release of
galectin 3 from the cytoplasm of mammalian cells during secretion. Journal of cell
science 1997;110 ( Pt 10):1169-78.
33. Danguy A, Camby I, Kiss R. Galectins and cancer. Biochimica et biophysica acta
2002;1572(2-3):285-93.
34. von Wolff M, Wang X, Gabius HJ, Strowitzki T. Galectin fingerprinting in human
endometrium and decidua during the menstrual cycle and in early gestation. Molecular
human reproduction 2005;11(3):189-94.
35. Fischer C, Sanchez-Ruderisch H, Welzel M, et al. Galectin-1 interacts with the
{alpha}5{beta}1 fibronectin receptor to restrict carcinoma cell growth via induction of
p21 and p27. The Journal of biological chemistry 2005;280(44):37266-77.
36. Scott K, Weinberg C. Galectin-1: a bifunctional regulator of cellular proliferation.
Glycoconjugate journal 2004;19(7-9):467-77.
37. Horiguchi N, Arimoto K, Mizutani A, Endo-Ichikawa Y, Nakada H, Taketani S.
Galectin-1 induces cell adhesion to the extracellular matrix and apoptosis of
non-adherent human colon cancer Colo201 cells. Journal of biochemistry
2003;134(6):869-74.
38. van den Brule FA, Waltregny D, Castronovo V. Increased expression of galectin-1 in
carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients. The
Journal of pathology 2001;193(1):80-7.
39. van den Brule F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V.
Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by
ovary carcinoma cells and affects both cancer cell proliferation and adhesion to
laminin-1 and fibronectin. Laboratory investigation; a journal of technical methods and
pathology 2003;83(3):377-86.
40. Gillenwater A, Xu XC, el-Naggar AK, Clayman GL, Lotan R. Expression of galectins
in head and neck squamous cell carcinoma. Head & neck 1996;18(5):422-32.
41. Tinari N, Kuwabara I, Huflejt ME, Shen PF, Iacobelli S, Liu FT. Glycoprotein
90K/MAC-2BP interacts with galectin-1 and mediates galectin-1-induced cell
aggregation. International journal of cancer 2001;91(2):167-72.
42. Rorive S, Belot N, Decaestecker C, et al. Galectin-1 is highly expressed in human
gliomas with relevance for modulation of invasion of tumor astrocytes into the brain
parenchyma. Glia 2001;33(3):241-55.
43. Camby I, Belot N, Lefranc F, et al. Galectin-1 modulates human glioblastoma cell
migration into the brain through modifications to the actin cytoskeleton and levels of
expression of small GTPases. Journal of neuropathology and experimental neurology
2002;61(7):585-96.
44. Wang X, Chen CF, Baker PR, Chen PL, Kaiser P, Huang L. Mass spectrometric
characterization of the affinity-purified human 26S proteasome complex. Biochemistry
2007;46(11):3553-65.
45. Aspenstrom P, Richnau N, Johansson AS. The diaphanous-related formin DAAM1
collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell
morphogenesis and actin dynamics. Experimental cell research 2006;312(12):2180-94