簡易檢索 / 詳目顯示

研究生: 曹珮琪
Cao, Pei-Chi
論文名稱: 變壓耦合式電漿設備之蝕刻速率最佳化
Optimization of etching rate in Transformer Coupled Plasma Equipment
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 73
中文關鍵詞: 電漿蝕刻電漿變壓耦合式電漿源田口氏直交表實驗方法
外文關鍵詞: Plasma etching, Plasma, Transformer Coupled Plasma power
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體蝕刻製程中,蝕刻速率過快或過慢都容易造成晶圓在蝕刻過程中產生缺陷,進而影響到生產良率,為了改善這些問題,蝕刻參數的調控成為主要改善蝕刻速率的方法。
    本研究主要目的在於找出最穩健的電漿蝕刻配方組合。電漿蝕刻製程參數有變壓耦合式電漿源、偏壓功率、壓力、氣體流量等,使用田口氏直交表實驗方法,來分析品質特性與調控參數的關係,其中以反應氣體之流量的影響最為顯著。
    最後,成功地利用田口氏直交表實驗方法,調整對於品質特性有影響的參數,達到蝕刻速率最佳化之目的,使理想機能達到望目。

    In semiconductor etching processes, the proper etching rate is vital since the too fast or slow etching rate is more likely to cause defects in the wafers during the etching process, thus affecting the production yield. To reach the desired etching rate, the etching parameters need to be regulated. The study is to find the most robust combination of plasma etching parameters for the setting etching rate. The process parameters include TCP power, bias power, pressure, gas flow rate etc. The Taguchi's Orthogonal arrays experimental method is used to analyze the relationship between the quality characteristic and the working parameters, where the effect of the gas flow rate is most significant. In the work, the optimized parameter combination to reach the wanted etching rate is obtained from the analysis and the combination is also verified to be able to acquire the desired etching rate.

    摘要 Ⅲ Abstract IV 誌謝 IX 總目錄 X 圖目錄 XⅢ 表目錄 XV 符號說明 XⅥ 第一章 緒論 1.1研究動機……………………………………………………………...….…..….1 1.2 文獻回顧………………………………………………………………….…….2 1.3 論文架構………………………………………………………………….…….3 第二章 基本原理 2.1. 乾蝕刻之簡介………………………………………………………………….7 2.1.1.物理性蝕刻…………………………………………………………………8 2.1.1.1濺擊蝕刻………………………………………………………...…9 2.1.1.2離子束蝕刻……………………………...……………………...…10 2.1.2.化學性蝕刻……………………………………………………...…………11 2.1.3.複合蝕刻……………………………………………………...……………12 2.1.3.1反應式離子蝕刻法……………………...…………...……………12 2.1.3.2 磁場強化反應性離子蝕刻……………...…………...……...……13 2.1.4蝕刻速率……………………………………………………...……………14 2.2. 電漿介紹……………………………………………………...……………….15 2.2.1變壓器耦合式電漿……………………………………...…………….21 2.2.2 偏壓功率……………………………………...………………………22 2.2.3 離子轟擊……………………………………...………………………23 2.2.4電漿反應方程式……………………………………...……………….23 2.3 濕蝕刻之簡介……………………………………...………………………..24 2.3.1.濕式蝕刻之原理……………………………………...……………….24 2.3.2.濕式蝕刻優點……………………………………...………………….24 2.3.3.濕式蝕刻缺點……………………………………...………………….24 2.3.4. 濕式蝕刻之應用……………………………………...……………...25 2.4田口原理……………………………………...………………………………27 2.4.1田口方法與傳統實驗設計差異……………………………………....27 2.4.2.田口方法應用流程……………………………………...…………….28 2.4.2.1確立目標……………………………………...………………..28 2.4.2.2品質特性的選擇……………………………………...………..28 2.4.2.3選擇控制因子……………………………………...…………..31 2.4.2.4直交表的確立……………………………………...…………..31 2.4.2.5信號雜訊比……………………………………...……………..33 2.4.2.6 因子效果估計……………………………………...………….35 2.4.2.7 變異數分析……………………………………...…………….36 2.4.2.8 驗證……………………………………...…………………….38 第三章 實驗設備與方法 3.1.實驗流程規劃……………………………………...………………………..39 3.2實驗材料……………………………………...……………………………...41 3.3實驗設備……………………………………...……………………………...42 3.3.1.量測膜厚機台……………………………………………………...42 3.3.2.反應式離子蝕刻機……………………………………...………....43 3.4田口直交表實驗設計……………………………………...………………...44 3.4.1控制因子配置水準表……………………………………...………….45 3.4.2實驗直交表……………………………………...…………………….46 3.4.3實驗設計直交展開表……………………………………...………….47 3.4.4實驗步驟……………………………………...……………………..48 第四章 實驗結果與討論……………………………………...…………………50 4.1第一次實驗Optimal-1結果之探討……………………………………....…50 4.1.1第一次實驗之實驗數據表……………………………………...…..50 4.1.2第一次實驗結果之S/N比探討…………………………………….51 4.1.3第一次實驗結果之品質特性探討………………………………….52 4.1.4第一次實驗結果之S/N比的變異分析表………………………….54 4.1.5控制因子的分類表………………………………………………….56 4.1.6第一次實驗結果之最佳化設計…………………………………….57 4.1.7第一次實驗結果之探討…………………………………………….58 4.1.8第一次實驗之實驗值與預測值結果比較………………………….59 4.2第二次實驗Optimal-2結果之探討…………………………………………61 4.3 Original、 Optimal-1、 Optimal-2實驗結果之比較值…………………...65 第五章 結論與未來展望……………………………………………………..67 參考文獻…………………………………………………………………………70

    [1] E. USEPA, "Office of compliance sector notebook project: profile of pulp and paper industry," Washington, DC20460, September 1995.
    [2] 黃景裕, "針對半導體製程金屬層良率提昇研究," 碩士, 工學院碩士在職專班半導體材料與製程設備組, 國立交通大學, 新竹市, 2010.
    [3] J. Lane, F. Klemens, K. Bogart, M. Malyshev, and J. Lee, "Feature evolution during plasma etching II Polycrystalline silicon etching," J. Vac. Sci. Technol, vol. A 18(1), pp. 188-196, 2000.
    [4] K. Bogart et al., "Mask charging and profile evolution during chlorine plasma etching of silicon”, J. Vac. Sci. Technol," J. Vac. Sci. Technol, vol. 18, no. 1, pp. 197-206, 2000.
    [5] 張朝雯, "變壓耦合式電漿製程設備之先進設備控制," 碩士, 機械工程系所, 國立交通大學, 新竹市, 2004.
    [6] R. Stewart, P. Vitello, and D. Graves, "Two‐dimensional fluid model of high density inductively coupled plasma sources," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 12, no. 1, pp. 478-485, 1994.
    [7] J. H. Gary S.Mary, Costas J.Spanos, "Statisical Experimental Design in Plasma Etch Modeling," IEEE Trans. Semicond. Manuf, vol. VOl.4, pp. 83-97, May 1991.
    [8] H. Zhu and R. Lindquist, "Profile control in isotropic plasma etching," pp. 116-119, 1992.
    [9] R. Stewart, P. Vitello, and D. Graves, "Two-dimensional fluid model of ligh density inductively coupled plasma sources," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 12, no. 1, pp. 478-485, 1994
    [10] P. L. Ventzek, R. J. Hoekstra, and M. J. Kushner, "Two-dimensional modeling of high plasma density inductively coupled source for materials processing," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 12, no. 1, pp. 461-477, 1994.
    [11] R. Patrick, S. Baldwin, and N. Williams, "Application of direct bias control in high-density inductively coupled plasma etching equipment," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 2, pp. 405-410, 2000.
    [12] C.-H. Chang, K.-C. Leou, and C. Lin, "Real-time feedback control of electron density in inductively coupled plasma," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, no. 3, pp. 750-756, 2001.
    [13] C.-H. Chang, K.-C. Leou, C. Lin, T.-L. Lin, C.-W. Tseng, and C.-H. Tsai, "Real-time control of ion energy in chlorine inductively coupled plasma etch processing," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 4, pp. 1183-1187, 2003.
    [14] 林世凱, "研究電漿蝕刻技術製作奈米級光阻線," 碩士, 工學院碩士在職專班半導體材料與製程設備組, 國立交通大學, 新竹市, 2010.
    [15] 莊達人, "VLSI 製造技術," 高立圖書, 2006.
    [16] S. M. Sze, "Semiconductor Sensors," Wiley New York, vol. 55, 1994.
    [17] 黃義佑, "微機電系統原理與應用 (Foundations of MEMS)," 高立圖書, 2008.
    [18] J. Gardner, "Microsensors: principles and applications," 1994.
    [19] C. Chang, "ULSI technology," McGraw-Hill, 1996.
    [20] W. E. Ruska, "Microelectronic processing: an introduction to the manufacture of integrated circuits," McGraw-Hill, Inc., 1988.
    [21] "反應式離子蝕刻機RIE 操作手冊 " NCKU Micro-Nano Technology Center/Southern Region MEMS Center 2003.
    [22] 蔡政宏, "微機電製程應用於薄膜體聲波元件之研究 " 國立中山大學, 2006.
    [23] 嚴永民, "高壓半導體元件淺溝槽隔離製程之差排改善及良率提昇研究," 碩士, 工學院半導體材料與製程設備學程, 國立交通大學, 新竹市, 2011.
    [24] 徐竣祈, "透過專利, 學術論文分析技術發展趨勢-以蝕刻技術為例," 碩士, 科技管理研究所, 國立政治大學, 台北市, 2008.
    [25] J. Vossen and W. Kern, "Thin film processes. Vol2," Academic Press. San Diego. CA, 1978.
    [26] M. A. Lieberman and A. J. Lichtenberg, "Principles of plasma discharges and materials processing," John Wiley & Sons, 2005.
    [27] 莊達人, "VLSI 製造技術," 高立圖書, vol. 4th, pp. 146-299, 2000.
    [28] V. Donnelly, D. Flamm, C. Tu, and D. Ibbotson, "Temperature dependence of InP and GaAs etching in a chlorine plasma," Journal of The Electrochemical Society, vol. 129, no. 11, pp. 2533-2537.
    [29] 莊達人, "VLSI 製造技術," 高立圖書有限公司, vol. 第三版, pp. 269-286, 1996.
    [30] C.-H. Chang, K.-C. Leou, C. Lin, T.-L. Lin, C.-W. Tseng, and C.-H. Tsai, "Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, no. 4, pp. 1183-1187, 2003.
    [31] F. F. Chen, "Introduction fo Plasma Physics," Plenum Press, New York, 1974.
    [32] H. V. Boenig, "Plasma science and technology," Cornell University Press, 1982.
    [33] H. Xiao, "Introduction to semiconductor manufacturing technology," Prentice Hall, 2001.
    [34] 施敏, "半導體元件物理與製作技術," 國立交通大學出版社 2002.
    [35] 陳力俊, "微電子材料與製程," 中國材料科學學會, 2000.
    [36] 廖木生, "變壓耦合式電漿製程設備之蝕刻率批片控制," 碩士, 機械工程系所, 國立交通大學, 新竹市, 2005.
    [37] 劉吉峰, "低介電常數奈米孔洞二氧化矽薄膜的乾式蝕刻特性研究," 國立交通大學 材料科學與工程學系, 2005.
    [38] 劉春福, "應用薄膜橋製作奈米尺寸電晶體極其相關研究," 碩士, 物理學系, 國立清華大學, 新竹市, 2004.
    [39] 龍文安, "積體電路微影製程," 高立出版, vol. chap 8, 1999.
    [40] 羅正忠,張鼎張譯, "半導體製程技術導論," 歐亞圖書有限公司, 2002.
    [41] J. Lane, F. Klemens, K. Bogart, M. Malyshev, and J. Lee, "Feature evolution during plasma etching II Polycrystalline silicon etching," J. Vac. Sci. Technol, vol. 18, no. 1, pp. 188-196, 2000.
    [42] S. Wolf and R. N. Tauber, "Silicon Processing for the VLSI ERA," Pattern Registration, pp. 473-476, 1986.
    [43] J. Judge, H. Hughes, and M. Rand, " Etching for Pattern Definition," Etching for Pattern Definition, vol. 6, no. 3, pp. 19-23, 1976.
    [44] G. T. Kovacs, N. I. Maluf, and K. E. Petersen, "Bulk Micromaching of Silicon," Proceedings of the IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
    [45] H. Kikyuama et al., "Principles of Wet Chemical Processing in ULSI Microfabrication," IEEE Transactions on Semiconductor Manufacture, vol. 4, no. 1, pp. 26-35, 1991.
    [46] 龍仁生譯, "再循環槽技術與過濾扮演的角色," 電子月刊, vol. 第二卷,第五期, pp. 66-74, 1996.
    [47] 田口玄一, "田口式品質工程概論," 中國生產力中心.
    [48] 吳復強, "產品穩健設計田口方法之原理與應用," 全威圖書有限公司, 2006.
    [49] 李慶專, "應用田口實驗法於快速原型系統參數設計之研究," 碩士, 高分子系, 國立臺灣科技大學, 台北市, 2006.
    [50] 鄭燕琴, "田口品質工程技術理論與實務," 中華民國品質管制學會, 1993.
    [51] 李輝煌, "田口方法品質設計的原理與實務," 高立圖書有限公司, 2010.
    [52] 洪福益, "台灣矽晶圓再生產業之經營與發展研究," 碩士, 高階經營管理碩士在職專班, 國立清華大學, 新竹市, 2008.
    [53] Latech, "http://www.latech.com.sg/product/1423713502-SiO2+Coated+Si+Wafers.html."
    [54] Mtixtl, "http://www.mtixtl.com/SI-SO-Ua76D05C1-300nm.aspx."
    [55] Filmetrics, "http://filmetrics.cn/ellipsometry."
    [56] M. Q. 羅文雄, "半導體製造技術," 滄海書局, vol. 初版, 2005.
    [57] C.-M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, "Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching," Applied Physics Letters, vol. 93, no. 13, 2008.
    [58] K. Ninomiya, K. Suzuki, S. Nishimatsu, and O. Okada, "Reaction of atomic fluorine with silicon," Journal of applied physics, vol. 58, no. 3, pp. 1177-1182, April 1985.
    [59] S. Joyce, J. Langan, and J. Steinfeld, "Chemisorption of fluorocarbon free radicals on silicon and SiO2," The Journal of Chemical Physics, vol. 88, no. 3, pp. 2027-2032, October 1987.
    [60] A. J. van Roosmalen, "Review: dry etching of silicon oxide," Vacuum
    vol. 34, no. 3-4, pp. 429-436, 1984.
    [61] 潘扶民, "以自組裝奈米孔洞 SiO2 作為次 70 nm IC 技術之超低介電薄膜之應用研究 (II)," 2004.

    無法下載圖示 校內:2022-02-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE