| 研究生: |
曾健豪 Tseng, Chien-hao |
|---|---|
| 論文名稱: |
以逆算法配合實驗數據預測單圓柱鰭片之熱傳係數 Application of the Inverse Method to Estimate the Heat Transfer Coefficient on a Cylindrical Fin with Experimental Temperature Data |
| 指導教授: |
陳寒濤
Chen, Han-taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 自然對流 、圓柱傾斜角度 |
| 外文關鍵詞: | natural convection, cylindrical inclined angle |
| 相關次數: | 點閱:86 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文乃以混合拉氏轉換法(Laplace transform method)和有限差分法(Finite-difference method)的數值方法,並配合最小平方法(Least-squares scheme)、二次仿樣曲線(Square spline)及溫度量測值來預測圓柱於各種不同傾斜角度之熱傳係數。本文之圓柱上的熱傳係數假設為非均勻,因此將圓柱劃分為數個小空間域,而後以數個連續之位置二次多項式函數與時間線性函數來計算未知圓柱表面條件隨位置與時間的變化情形。
實驗結果顯示,於自然對流下,圓柱表面上之平均熱傳係數會隨傾斜角度的增加而減少。為了驗證本文逆算法之可靠性及準確性,本文之平均熱傳係數的預測值將與相關文獻相比較。
The study applies the Laplace transform method and the finite-difference method in conjunction with the least-squares scheme, the square spline and temperature measurements to estimate the heat transfer coefficient on the cylindrical surface at different inclined angle. The study assumed the heat transfer coefficient on this cylinder is non-uniform. Thus the whole cylinder is divided into several sub-intervals. Later, a series of continuous square polynomial function in space and a linear function in time are introduced to estimate the distribution of the unknown cylindrical surface condition.
The results of experiment show that average heat transfer coefficient on cylindrical surface decreases with inclined angle in natural convection. A comparison of the average heat transfer coefficient between the present estimates and previous results is made in order to evidence the dependability and accuracy of the present inverse scheme.
參 考 文 獻
1. H.R. Lee, T.S. Chen and B.F. Armaly, “Natural convection along slender vertical cylinders with variable surface temperature,” J. Heat Transfer, vol. 110, 1988, pp. 103-108.
2. H.R. Nagendra, M.A. Tirunarayanan and A. Ramachandran, “Laminar free convection from vertical cylinders with uniform heat flux,” J. Heat Transfer, vol. 92, 1970, pp. 191-194.
3. T. Fujii and H. Uehara, “Laminar natural convective heat transfer form the outer surface of a vertical cylinder,” Int. J. Heat Transfer, vol. 13, 1970, pp. 607-615.
4. C.D. Surma Devi, M. Nagaraj and G. Nath, “Axial heat conduction effects in natural convection along a vertical cylinder,” Int. J. Heat Mass Transfer, vol. 29, 1986, pp. 654-656.
5. J.J. Heckel, T.S. Chen and B.F. Armaly, “Mixed convection along slender vertical cylinders with variable surface temperature,” Int. J. Heat Mass Transfer, vol. 32, 1989, pp. 1431-1442.
6. K. Velusamy and V.K. Garg, “Transient natural convection over a heat generating vertical cylinder,” Int. J. Heat Mass Transfer, vol. 35, 1992, pp. 1293-1306.
7. N.V. Shumakoy, “A method for the experimental study of the process of heating a solid body,” Soviet Physics-Technical Physics (Translated by Institute of Physics), vol. 2, 1957, pp. 771.
8. G.Tr. Stolz, “Numerical solution to an inverse problem of heat condition for simple shapes,” ASME J. Heat Transfer, vol. 82, 1960, pp. 20-26.
9. J.V. Beck, “Calculation of surface heat flux from an integral temperature history,” ASME J. Heat Transfer, 62-HT-46, 1962.
10. E.M. Sparrow, A. Haji-Sheikh and T.S. Lundgern, “The inverse problem in transient heat conduction, ” J. Appl. Mech., vol. 86e, 1964, pp. 369-375.
11. J.V. Beck, “Surface heat flux determination using an integral method,” J. Nucl. Eng. Des., vol. 7, 1968, pp. 170-178.
12. O.M. Alifanov, “Solution of an inverse problem of heat conduction by iteration method,” J. Eng. Phys., vol. 26, No. 4, 1974, pp. 471-476.
13. N.M. Alnajem and M.N. Özisik, “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, vol. 107, 1985, pp. 700-703.
14. E.P. Scott and J.V. Beck, “Analysis of order of the sequential regulation solutions of heat conduction problem,” ASME J. Heat Transfer, vol. 111, 1989, pp.218-224.
15. J.V. Beck and D.A. Murio, “Combined function specification regularization procedure for solution of inverse heat conduction problem,” AIAA J., vol. 24, 1986, No. 180-185.
16. C.H. Huang and M.N. Özisik, “Inverse problem of determining the unknown wall heat flux in laminar flow through a parallel plate duct,” Numer. Heat Transfer, Part A, vol. 21, 1992, pp. 55-70.
17. C.H. Huang and M.N. Özisik, “Inverse problem of determining the unknown strength of an internal plate heat source,” J. Franklin Institute, vol. 329, No. 4, 1992, pp. 751-764.
18. J.V. Beck, B. Litkouhi and C.R.St. Chair, “Efficient sequential solution of nonlinear inverse heat conduction problem,” Numer. Heat Transfer, vol. 5, 1982, pp. 275-286.
19. R.G. Hill, G.P. Mulholland and L.K. Matthews, “The application of the Backus-Gilbert method to the inverse heat conduction problem in composite meadia,” ASME Paper No. 82-HT-26, 1982.
20. I. Frank, “An application of least-squares method to the solution of the inverse problem of heat conduction,” ASME J. Heat Transfer, 85C, 1963, pp. 378-379.
21. L.I. Deverall and R.S. Channapragada, “A new integral equation for heat flux in inverse heat conduction,” ASME J. Heat Transfer, 88C, 1966, pp. 327-328.
22. W.K. Yeung and T.T. Lam, “Second-order finite difference approximation for inverse determination of thermal conductivity,” Int. J. Heat Mass Transfer, vol. 39, No. 17, 1996, pp. 3685-3693.
23. H.T. Chen and J.Y. Lin, “Hybrid Laplace transform technique for non-linear transient thermal problems,” Int. J. Heat Mass Transfer, vol. 34, 1991, pp. 1301-1308.
24. H.T. Chen and J.Y. Lin, “Numerical analysis for hyperbolic heat conduction,” Int. J. Heat Mass Transfer, vol. 36, 1993, pp. 2891-2898.
25. H.T. Chen and J.Y. Lin, “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, vol. 37, 1994, pp. 153-164.
26. H.T. Chen and J.Y. Lin, “Application of the laplace transform to nonlinear transient problems,” Appl. Math. Modeling, vol. 15, 1991, pp. 144-151.
27. H.T. Chen, S.Y. Lin and L.C. Fang, “Estimation of surface temperature in two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, vol. 44, 2001, pp. 1455-1463.
28. H.T. Chen, S.Y. Peng, P.C. Yang and L.C. Fang, “Numerical method for hyperbolic inverse heat conduction problems,” Int. Comm. Heat Mass Transfer, vol. 28, 2001, pp. 847-856.
29. H.T. Chen, S.Y. Lin and L C. Fang, “Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, vol. 45, 2002, pp. 15-23.
30. H.T. Chen, X.Y. Wu and Y.S. Hsiao, “Estimate of surface condition from the theory of dynamic thermal stresses,” Int. J. Thermal Sciences, vol. 43, 2004, pp. 95-104.
31. N.V. Suryanarayana, “Engineering Heat Transfer,” WEST PUBLISHING COMPANY, 1995, pp. 445.
32. V.S. Arpaci, S.H. Kao and A. Selamet, “Introduction to Heat Transfer,” Prentice Hall, 1999, pp. 588.
33. F.P. Incropera and D.P. Dewitt, “Introduction to Heat Transfer,” 3th ed., John Wiley and Sons, 1996, pp. 8.
34. M. Al-Arabi and M. Khamis, “Natural convection heat transfer from inclined cylinders,” Int. J. Heat Mass Transfer, vol. 25, 1982, pp. 3-15.