簡易檢索 / 詳目顯示

研究生: 林立屏
Lin, Li-Ping
論文名稱: 電漿處理搭配10-MDP對於牙科高強度陶瓷的影響
The effect of plasma treatment conditions combined with 10-MDP monomer on high-strength dental ceramics
指導教授: 莊淑芬
Chuang, Shu-Fen
共同指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 63
中文關鍵詞: 高強度陶瓷氧電漿處理冷熱循環微拉伸鍵結強度
外文關鍵詞: high-strength ceramic, oxygen plasma treatment, 10-MDP, thermocycle, microtensile bond test
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋯和氧化鋁陶瓷是全瓷冠冠心的主要材料之一。黏著全瓷冠之前,通常會使用氧化鋁噴砂或是矽砂噴塗對瓷冠內面做處理,再塗上矽烷偶合劑和樹脂黏著劑和牙齒黏著。但是這些處理法所得黏著強度,無法抵抗牙套鬆脫或是樹脂聚合收縮的力量。電漿被廣為運用在生醫材料的表面處理,利用改變氣體種類、處理時間、氣體流量和通入電壓等處理條件,產生不同電漿以處理材料表面,可以改變材料表面的性質,而不破壞材料本質。此外,10-MDP被證實可增加賤金屬與樹脂黏著劑的黏著。實驗顯示樹脂黏著劑加入10-MDP,可以增加牙科氧化鋯陶瓷的黏著強度。本實驗目的主要探討電漿處理搭配10-MDP對於牙科高強度陶瓷的影響。
    初期實驗中,為了選取適合處理牙科陶瓷的電漿參數,先探討氣體種類、處理時間、電漿的衰退變化對於牙科陶瓷表面親水性的影響。為了進一步探討電漿處理對於高強度陶瓷黏著強度的影響,兩種高強度Cercon、LAVA分別利用氧化鋁噴砂,氧化鋁噴砂之後再用氧電漿處理或Rocatec soft ® 處理15秒。之後將三種市售含有10-MDP的產品alloy primer、ED primer、SE primer (Kurary) 以一比一等體積的方式與矽烷偶合劑混合,並塗佈於噴砂和噴砂搭配氧電漿處理的陶瓷上。最後將試片與樹脂塊利用樹脂黏著劑黏著,並置放於37℃水槽中靜置隔夜,之後將黏著試片利用高速切割機切成0.8x0.8 mm2大小,一半的試片經過5-60℃ 2000次冷熱循環。最後將所有的試片分別固定於材料試驗機上面進行拉力測試,直到斷裂,並用電子顯微鏡觀察斷裂情形,測試結果利用ANOVA test在95%的信心水準下做統計。為了探討氧電漿處理對於陶瓷表面改質的影響,利用奈米壓痕技術探討表面硬度的差異並搭配X光繞射探討處理之後對於表面晶格的改變。
    在拉力測試實驗結果顯示,不論是什麼處理方法,冷熱循環都會使黏著強度降低。Rocatec soft ® 處理完的試片,有最高的初期黏著強度,但是冷熱循環之後,強度下降比其他實驗組多。噴砂處理後再經過氧電漿處理10分鐘可以有效維持冷熱循環後的黏著強度。搭配10-MDP塗布的組別比未經改質組有更高的黏著強度。在 Cercon 陶瓷組,經過冷熱循環之後,氧電漿搭配 SE primer/silane與Rocatec soft ®處理在統計上有相同黏著強度。在LAVA陶瓷組中,氧電漿搭配10-MDP處理的組別,黏著強度的提升並不如Cercon陶瓷有效。奈米壓痕技術結果顯示電漿處理對於陶瓷表面硬度並沒有顯著影響。X光繞射結果顯示氧電漿處理會使陶瓷晶格產生微小的變化。
    結論:氧電漿處理高強度陶瓷可以改變表面性質。氧電漿處理經過冷熱循環以後可以維持高強度陶瓷與樹脂黏著劑的黏著強度。氧電漿對陶瓷表面黏著改質的效果與陶瓷種類有關。利用氧電漿處理搭配10-MDP monomer處理Cercon陶瓷可得有效且耐久的黏著強度。但氧電漿處理搭配10-MDP monomer處理對於LAVA陶瓷的黏著強度不如Cercon陶瓷有效。

    Zirconia-based and alumina-based ceramics are widely applied as core materials of all ceramic crowns. The pre-cementation surface treatments of these materials comprise of air-abrasion or silica coating followed by silanization. However, the bond strength is lower than an expected value to resist the dislodging force. Plasma treatment is an efficient treatment to modify the surface properties of biomaterials. By introducing different plasma conditions, the surface properties of the materials can be changed without excessive damage. 10-MDP (10-Methacryloyloxy-decyl dihydrogen phosphate) monomer has been applied on metal to increase bonding to resin cement. Bis-GMA luting agents modified with 10-MDP also showed improved bond strength on zirconia ceramics. The aim of this study was to evaluate the effects of oxygen plasma treatments combined with 10-MDP monomer on the bond strength of high-strength ceramics.
    To determine the appropriate parameters of plasma surface treatment, pilot study was performed to evaluate the gas species, treatment time and aging effect. According to the results, oxygen plasma treatment for 10 minutes was used in the present study.
    Cercon and LAVA ceramics specimens were separate treated with air abrasion (AA), air abrasion plus oxygen plasma (AAO), or Rocatec soft® (RS) for 15s. On a half specimens in the AA or AAO groups, three commercial 10-MDP containing primers, Alloy primer, ED primer, SE primer (Kurary), were mixed with silane coupling agent and then separately applied on. All treated samples were bonded to resin block with resin cement and then stored in 37℃ water bath for 24 hours. Bonded samples were cut into microbeams and divided into initial and thermocycled groups. For thermocycled groups, beams were subjected to 2000 or 5000 thermocycles. Microtensile bond test was used to evaluate the bond strength. All tested result were statistically analyzed with one-way ANOVA and Tukey multiple comparison test at p<0.05. Nanoindentation and XRD analysis were used to analyze the surface change after plasma treatment on the ceramics.
    The results showed that oxygen plasma treatment following AA can retained more stable bond after thermocycles. 10-MDP modified groups showed higher bond strength than non-modified groups in initial and after thermocycles. RS group showed the highest initial bond strength but the strength decreased dramatically after thermocycles. For Cercon ceramics, oxygen plasma followed by SE primer/silane mixture (AAOS) obtained comparable bond values as RS after 5000 thermocycles. For LAVA ceramics, oxygen plasma treatment followed by 10-MDP/ silane application did not show as efficient result as those of Cercon ceramics. Nanoindention showed insignificant surface hardness change after oxygen plasma treatment. XRD analysis showed mild phase transformation after oxygen plasma treatment.
    In conclusion, oxygen plasma treatment can modify the surface properties without damaging the bulk properties excessively. High strength ceramic treated with oxygen plasma can retained original bond strength after thermal aging. The effect of plasma surface modification treatment is associated with the type of ceramics. Oxygen plasma treatment combined with 10-MDP application provided effective and durable resin bonding after thermocycles. However, oxygen plasma treatment obtained little effect to improve LAVA ceramic bonding .

    Abstract…………………………..………………………………………………………………………………….. …III 中文摘要………..…………….…………………………………………………………………..…………………….V 致謝……………………………………………………………………………………..VII LIST OF TABLES ………..……………………………………………………..……....X LIST OF FIGURES……………………………………………..………………………XI Chapter 1 Introduction 1 1.1 All Ceramic restorations 1 1.2 Surface treatment of all-ceramic restoration 7 1.3 Plasma surface treatment 10 1.4 Method to evaluate the bond strength between ceramic and luting resins 12 1.5 Surface properties after surface treatment 13 1.6 Motivation of the study 14 Chapter 2 Materials and Methods 15 2.1 Determination of plasma treatment parameters 17 2.1.1 The influence of different gases and treatment time 17 2.1.2 The influence of different ceramic types 20 2.1.3. Effect of plasma aging 21 2.2 Evaluation of bond strength 22 2.2.1 The surface treatments 23 2.2.2 Bonding procedure 27 2.2.2 Microtensile bond test 28 2.3 Analysis of fractured mode 29 2.4 X-ray diffraction analysis (XRD) analysis 29 2.5 Nanoindentation 31 Chapter 3 Result 32 3.1 Parameters for plasma treatment 32 3.1.1 The influence of different gases and treatment time 32 3.1.2 The influence of ceramic types 34 3.1.3 Effect of plasma aging 36 3.2 XRD analysis 38 3.3 Surface hardness 39 3.4 Bond strength 40 3.4.1 Cercon ceramic 40 3.4.2 LAVA ceramic 41 3.5 Fracture mode 43 3.5.1 Cercon Ceramic 43 3.3.2 LAVA ceramics 48 Chapter 4 Discussion 52 4.1 Parameters of plasma surface treatment on high-strength ceramics 52 4.2 Surface treatment & Bond strength 54 4.3 Surface properties after surface treatment 58 Chapter 5 Conclusion 60 Reference: 61

    1.Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: Historical roots and current perspectives. The Journal of Prosthetic Dentistry 1996;75(1):18-32.
    2.Cavalcanti A, Foxton R, Watson T, Oliveira M, Giannini M, Marchi G. Y-TZP Cermaic: Key concepts for clinical applicaiton. operative dentistry 2009.
    3.Kelly JR. Ceramics in restorative and prosthetic dentostry 1. Annual Review of Materials Science 1997;27(1):443-468.
    4.Conrad HJ, Seong W-J, Pesun IJ. Current ceramic materials and systems with clinical recommendations: A systematic review. The Journal of Prosthetic Dentistry 2007;98(5):389-404.
    5.McLaren E, White S. Glass-infiltrated zirconia/alumina-based ceramic for crowns and fixed partial dentures: clinical and laboratory guidelines. Pract Periodontics Aesthet Dent 1999.
    6.Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental Materials 2008;24(3):299-307.
    7.Amaral R, Özcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning. Dental Materials 2006;22(3):283-290.
    8.Amaral R, Özcan M, Valandro LF, Balducci I, Bottino MA. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008;85B(1):1-9.
    9.Miyazakiti T, Hotta Y, Kunij J, Kuriyam S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience
    dental material journal 2009.
    10.Tholey MJ, Swain MV, Thiel N. SEM observations of porcelain Y-TZP interface. dental materials 2009;25(7):857-862.
    11.Curtis AR, Wright AJ, Fleming GJP. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. Journal of Dentistry 2006;34(3):195-206.
    12.Awliya W, Oden A, Yaman P, Dennison JB, Razzoog ME. Shear bond strength of a resin cement to densely sintered high-purity alumina with various surface conditions. Acta Odontologica Scandinavica 1998;56(1):9 - 13.
    13.Özcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dental Materials 2003;19(8):725-731.
    14.Kern M, Wegner SM. Bonding to zirconia ceramic: adhesion methods and their durability. Dental Materials 1998;14(1):64-71.
    15.Francescantonio MD, Oliveira MTd, Garcia RN, Romanini J, Silva NRFAd, Giannini M. Bond Strength of Resin Cements to Co-Cr and Ni-Cr Metal Alloys Using Adhesive Primers. Journal of Prosthodontics;19(2):125-129.
    16.Taira Y, Kamada K, Atsuta M. Effects of Primers Containing Thiouracil and Phosphate Monomers on Bonding of Resin to Ag-Pd-Au Alloy. dental material journal 2008.
    17.Sarafianou A, Seimenis I, Papadopoulos T. Effectiveness of different adhesive primers on the bond strength between an indirect composite resin and a base metal alloy. The Journal of Prosthetic Dentistry 2008;99(5):377-387.
    18.Hummel M, Kern M. Durability of the resin bond strength to the alumina ceramic Procera. Dental Materials 2004;20(5):498-508.
    19.Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: A review of the literature. The Journal of Prosthetic Dentistry 2003;89(3):268-274.
    20.Belkind A, Gershman S. Plasma cleaning of surface. Vacuum technology and coating 2008.
    21.Keliler D, Erkut S, Shard AG, Akdo E, gbreve, an, et al. A novel approach for improvement of the interfacial binding of ceramics for dental materials: Chemical treatment and oxygen plasma etching. Journal of Applied Polymer Science 2008;110(5):2656-2664.
    22.Chen CK, Chuang SF, Chang CH. Effects of different surface treatments on characteristics and micro-tensile bond strength of dental ceramics. 2007.
    23.Della Bona A, van Noort R. Shear vs. Tensile Bond Strength of Resin Composite Bonded to Ceramic. Journal of Dental Research 1995;74(9):1591-1596.
    24.Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, et al. Relationship between surface area for adhesion and tensile bond strength -- Evaluation of a micro-tensile bond test. Dental Materials 1994;10(4):236-240.
    25.Nakabayashi N, Watanabe A, Arao T. A tensile test to facilitate identification of defects in dentine bonded specimens. Journal of Dentistry 1998;26(4):379-385.
    26.Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. Journal of Dentistry 1999;27(2):89-99.
    27.Denry IL, Holloway JA. Microstructural and crystallographic surface changes after grinding zirconia-based dental ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2006;76B(2):440-448.
    28.Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. Journal of Dentistry 2005;33(1):9-18.
    29.Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dental Materials 2009;25(2):172-179.
    30.Lüthy H, Loeffel O, Hammerle CHF. Effect of thermocycling on bond strength of luting cements to zirconia ceramic. Dental Materials 2006;22(2):195-200.
    31.Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. The Journal of Prosthetic Dentistry 2006;95(6):430-436.

    下載圖示 校內:2015-09-02公開
    校外:2015-09-02公開
    QR CODE