| 研究生: |
陳浩漢 Chen, Hao-Han |
|---|---|
| 論文名稱: |
建構與評估非接觸式低頻超音波對傷口癒合的功效 To Develop and Evaluate the Effects of Non-Contact Low-Frequency Ultrasound in Wound Healing Applications |
| 指導教授: |
吳炳慶
Wu, Ping-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 慢性傷口 、傷口癒合 、非接觸式低頻超音波療法 、糖尿病大鼠模型 、傷口縮合率 |
| 外文關鍵詞: | Chronic wounds, wound healing, noncontact low-frequency ultrasound therapy, diabetic rat models, wound closure percent |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
慢性傷口如褥瘡(Pressure Sore)、下肢潰瘍(Leg Ulcers)、糖尿病足部症候群(Diabetic Foot Syndrome)等是人們亟須解決的問題,雖然目前有許多治療方法,例如抗生素治療、高壓氧療法、負壓療法等,但欠缺一個有效且便宜的解決方法。而近年來治療性超音波被發現對於傷口癒合擁有一定的效果,且可藉由調整不同的強度、頻率等參數去促進或抑制細胞的生長。然而目前對於非接觸式低頻超音波(Noncontact Low-frequency Ultrasound,NLFUS)在慢性傷口癒合上的應用並沒有許多研究探討。因此,為了瞭解NLFUS對於傷口所造成的生長因子改變之生物效應,本研究建構頻率40 kHZ的超音波換能器。利用劃痕分析細胞實驗,使用不同的NLFUS參數如佔空比、強度、照射時間來評估纖維母細胞(3T3) 受外力破壞後接受NLFUS治療後增生的影響。此外,我們建構慢性傷口的糖尿病大鼠動物模型,來評估最有效的NLFUS參數在糖尿病大鼠傷口上的治療效果。同時將大鼠分成五組不同的治療條件,不接受NLFUS治療(對照組)、每天接受一次50 mW/cm2治療(A組)、每天接受50 mW/cm2兩次治療(B組)、一個禮拜接受50 mW/cm2三次治療(C組)、每天接受100 mW/cm2一次治療(D組)以及每天接受一次50 mW/cm2治療(E組,間斷波)。除了觀察不同NLFUS的治療條件對於傷口癒合的狀況,並研究潛在的生長因子如膠原蛋白(collagen)、纖連蛋白(Fibronectin)、Rac-1蛋白、血管內皮生長因子(VG-1)等在開創後第三天、第七天,及傷口完全癒合之後的含量變化,以評估NLFUS所帶來的幫助。
實驗結果顯示:40kHz超音波換能器在離傷口1.5公分以內,並且不會因為造成劇烈的溫度改變而引起熱效應及空穴效應。在細胞研究中,經過NLFUS治療之後的12小時,超音波可幫助細胞比對照組多增生大約20%的增生面積,其中以連續波(100%佔空比)強度50mW/cm2、照射時間3分鐘的參數效果相對較好,因此可初步判斷NLFUS可幫助細胞增生。而體內研究發現超音波組在前九天比起對照組擁有明顯的效果,而在第七天時差異最大,在第七天時,對照組、A組、B組、C組、D組的傷口縮合率分別為-8.57±24.93%、51.36±18.49%、53.38±8.31%、24.15±13%、15.06±16.55%。並且各組傷口平均癒合時間為17.2±0.98天、14.83±0.9天、14.7±0.47、14.4±0.8天、16±1天。而在經過蘇木精-伊紅染色(H&E)及免疫組織化學染色法(IHC)分析之後,H&E結果顯示超音波組在第三天及第七天擁有較好的癒合效果,比對照組也擁有較多的毛囊表現。超音波組相比對照組在第三天及第七天時擁有較多的膠原蛋白一型、纖連蛋白、Rac-1蛋白、以及血管內皮生長因子表現,證明NLFUS可以刺激生長因子的產生並幫助傷口癒合。實驗結果證實NLFUS在前期對於傷口癒合擁有一定的癒合效果,幫助傷口縮合以達到快速癒合,並減少大約三天的癒合時間。且在比較連續波(A組)及間斷波(E組)在傷口癒合的差異,發現連續波與間斷波擁有差不多的癒合時間及組織回復狀況,然而連續波在傷口癒合之後擁有較多的膠原蛋白一型表現,因此可初步判斷連續波比起間斷波在傷口癒合中擁有較好的癒合效果。
Chronic wounds such as pressure sores, leg ulcers, and diabetic foot syndrome are critical problems that require solutions. Although there are many methods for treating chronic wounds, including antibiotic treatment, hyperbaric oxygen therapy, and negative pressure therapy, there is still a lack of an effective, cheap solution for treating chronic wounds. Recently, ultrasound therapy was found to have a specific effect in wound healing. It can be used to promote or restrain the proliferation of cells by adjusting different parameters such as frequency and intensity. However, not many studies have explored the application of noncontact low-frequency ultrasound (NLFUS) in wound healing up to the present time. Therefore, for the purpose of evaluating the biological effect of changes in growth factors caused by NLFUS, in this study, transducers with 40kHz were developed, and the scratch assay was used in the in vitro experiments. We then evaluated whether there was damage during the proliferation of 3T3 fibroblasts and then subjected them to ultrasound therapy using different parameters, such as duty cycle, intensity, and treatment duration. In addition, we developed chronic wound animal models by inducing diabetes in rats in order to evaluate the healing effect of the optimal NLFUS parameters on wounds in diabetic rats. At the same time, the rats were divided into 5 groups with different treatment conditions, including the sham group (non-treated), the A group (50 mW/cm2, once/day), the B group (50 mW/cm2, twice/day), the C group (50 mW/cm2, thrice/7 days), the D group (100 mW/cm2, once/day), and the E group (50. mW/cm2, once/day, pulse wave). In addition to observing the status of wound healing under the different treatment conditions, we researched changes in underlying growth factors, including collagen, fibronectin, rac-1, and VEGF on day 3 and day 7 after the surgery and after the wounds had healed completely to measure the benefits of NLFUS.
The results showed that the 40kHz transducers wouldn’t cause excessive changes in temperature that led to a thermal effect and cavitation when the distance between the wound and the transducer was below 1.5cm. In in vitro experiments, NLFUS could improve cell proliferation in more than 20% of the healing area after ultrasound treatment for 12 hours. The best parameter was the continuous wave (100% duty cycle) with an intensity of 50 mW/cm2 with a treatment duration of 3 min. It was thus initially evidenced that NLFUS could help with cell proliferation. In the in vivo experiments, the ultrasound groups exhibited more improvement in the first 9 days in comparison with the sham group. The most obvious difference occurred on day 7. On day 7, the wound closure of the sham group, A group, B group, C group, and D group were, respectively, -8.56±24.93%, 51.36±18.49%, 53.38±8.31%, and 24.15±13%, and 15.06±16.55%, and the average healing time of each group was 17.2±0.98 days, 14.83±0.9 days, 14.7±0.47 days, 14.4±0.8 days, and 16±1 days, respectively. After the hematoxylin & eosin (H&E) stain and immunohistochemistry (IHC) analyses, the results of H&E stain indicated that the ultrasound groups had the best healing effects on day 3 and day 7. The ultrasound groups were also found to have more follicles than the sham group. After analyzing the IHC results, the ultrasound groups were found to have more collagen type 1, fibronectin, rac-1, and VEGF in comparison with the sham group on day 3 and day 7. This proved that NLFUS could stimulate the generation of growth factors and in turn help wound healing. The results of the experiments indicated that NLFUS had the specific healing effect in wound healing in the early period. It helped with the condensation of wounds to achieve rapid healing and reduced the healing time to approximately 3 days. After comparing the difference between the continuous wave and the pulse wave in wound healing, it was found that the continuous wave and the pulse wave had similar healing time and tissue recovery. However, the continuous wave had more expression of collagen-1 and fibronectin after the wounds were healed. Therefore, it could be inferred that the continuous wave had a better healing effect in wound healing in comparison with the pulse wave.
Abd El-Twab, S.M., H.M. Mohamed and A.M. Mahmoud "Taurine and pioglitazone attenuate diabetes-induced testicular damage by abrogation of oxidative stress and up-regulation of the pituitary-gonadal axis." Can J Physiol Pharmacol 94(6): 651-661.(2016).
Altavilla, D., M. Galeano, A. Bitto, L. Minutoli, G. Squadrito, P. Seminara, F.S. Venuti, V. Torre, M. Cal, M. Colonna, P.L. Cascio, G. Giugliano, N. Scuderi, C. Mioni, S. Leone and F. Squadrito "Lipid Peroxidation Inhibition by Raxofelast Improves Angiogenesis and Wound Healing in Experimental Burn Wounds." Shock 24(1): 85-91.(2005).
Clore, J.N., I.K. Cohen and R.F. Diegelmann "Quantitation of collagen types I and III during wound healing in rat skin." Proceedings of the Society for Experimental Biology and Medicine 161(3): 337-340.(1979).
Cruz, J.M., M. Hauck, A.P. Cardoso Pereira, M.B. Moraes, C.N. Martins, F. da Silva Paulitsch, R.D. Plentz, W. Peres, A.M. Vargas da Silva and L.U. Signori "Effects of Different Therapeutic Ultrasound Waveforms on Endothelial Function in Healthy Volunteers: A Randomized Clinical Trial." Ultrasound Med Biol 42(2): 471-480.(2016).
De Deyne, P.G. and M. Kirsch-Volders "In vitro effects of therapeutic ultrasound on the nucleus of human fibroblasts." Physical Therapy 75(7): 629-634.(1995).
Doan, N., P. Reher, S. Meghji and M. Harris "In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes." Journal of oral and maxillofacial surgery 57(4): 409-419.(1999).
Escandon, J., A.C. Vivas, R. Perez, R. Kirsner and S. Davis "A prospective pilot study of ultrasound therapy effectiveness in refractory venous leg ulcers." International wound journal 9(5): 570-578.(2012).
Flanagan, M. "Wound measurement: can it help us to monitor progression to healing?" Journal of wound care 12(5): 189-194.(2003).
Freiesleben, S.H., J. Soelberg, N.T. Nyberg and A.K. Jager "Determination of the Wound Healing Potentials of Medicinal Plants Historically Used in Ghana." Evid Based Complement Alternat Med 2017: 9480791.(2017).
Geback, T., M.M. Schulz, P. Koumoutsakos and M. Detmar "TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays
" Biotechniques 46(4): 265-274.(2009).
Grada, A., M. Otero-Vinas, F. Prieto-Castrillo, Z. Obagi and V. Falanga "Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay." J Invest Dermatol 137(2): e11-e16.(2017).
Grinnell, F. "Fibronectin and wound healing." Journal of cellular biochemistry 26(2): 107-116.(1984).
Haesler, E. "Evidence summary: non-contact low-frequency ultrasound in wound management." Wound Practice & Research: Journal of the Australian Wound Management Association 23(3): 144.(2015).
Harding, K., H. Morris and G. Patel "Science, medicine, and the future: healing chronic wounds." BMJ: British Medical Journal 324(7330): 160.(2002).
Honaker, J.S., M.R. Forston, E.A. Davis, M.M. Wiesner and J.A. Morgan "Effects of non contact low‐frequency ultrasound on healing of suspected deep tissue injury: a retrospective analysis." International wound journal 10(1): 65-72.(2013).
Hosseini, S.A., S. Rashidi and A. Yadollahpour "Ultrasound based techniques for treatment of chronic Wounds: A comprehensive review of therapeutic efficacies and clinical considerations." INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 5(2): 387-397.(2016).
Hung, Y.W., L.T. Lee, Y.C. Peng, C.T. Chang, Y.K. Wong and K.C. Tung "Effect of a nonthermal-atmospheric pressure plasma jet on wound healing: An animal study." J Chin Med Assoc 79(6): 320-328.(2016).
Iwanabe, Y., C. Masaki, A. Tamura, S. Tsuka, T. Mukaibo, Y. Kondo and R. Hosokawa "The effect of low-intensity pulsed ultrasound on wound healing using scratch assay in epithelial cells." J Prosthodont Res 60(4): 308-314.(2016).
Jafari, S., S. Morteza and R. Hunger "IHC Optical Density Score: A New Practical Method for Quantitative Immunohistochemistry Image Analysis." Applied immunohistochemistry & molecular morphology 25(1): e12-e13.(2017).
James, G.A., E. Swogger, R. Wolcott, E. Pulcini, P. Secor, J. Sestrich, J.W. Costerton and P.S. Stewart "Biofilms in chronic wounds." Wound Repair Regen 16(1): 37-44.(2008).
Jang, S.H., J. Park, S.H. Kim, K.M. Choi, E.S. Ko, J.D. Cha, Y.R. Lee, H. Jang and Y.S. Jang "Red ginseng powder fermented with probiotics exerts antidiabetic effects in the streptozotocin-induced mouse diabetes model." Pharm Biol 55(1): 317-323.(2017).
Kazemian, M., M. Abad, M. reza Haeri, M. Ebrahimi and R. Heidari "Anti-diabetic effect of Capparis spinosa L. root extract in diabetic rats." Avicenna journal of phytomedicine 5(4): 325.(2015).
Keltie, K., C.A. Reay, D.R. Bousfield, H. Cole, B. Ward, C.P. Oates and A.J. Sims "Characterization of the ultrasound beam produced by the MIST therapy, wound healing system." Ultrasound Med Biol(2.298-2.554) 39(7): 1233-1240.(2013).
Kim, S.W., J. Roh and C.S. Park "Immunohistochemistry for Pathologists: Protocols, Pitfalls, and Tips." J Pathol Transl Med 50(6): 411-418.(2016).
Kundi, S., R. Bicknell and Z. Ahmed "The role of angiogenic and wound-healing factors after spinal cord injury in mammals." Neurosci Res 76(1-2): 1-9.(2013).
Lee, B.J., J.H. Jeong, S.G. Wang, J.C. Lee, E.K. Goh and H.W. Kim "Effect of botulinum toxin type a on a rat surgical wound model." Clin Exp Otorhinolaryngol 2(1): 20-27.(2009).
Liang, C.C., A.Y. Park and J.L. Guan "In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro
" Nat Protoc 2(2): 329-333.(2007).
Maan, Z.N., M. Januszyk, R.C. Rennert, D. Duscher, M. Rodrigues, T. Fujiwara, N. Ho, A. Whitmore, M.S. Hu, M.T. Longaker and G.C. Gurtner "Noncontact, low-frequency ultrasound therapy enhances neovascularization and wound healing in diabetic mice." Plast Reconstr Surg 134(3): 402e-411e.(2014).
Madhok, B.M., K. Vowden and P. Vowden "New techniques for wound debridement." International wound journal 10(3): 247-251.(2013).
Martins, C.N., M.B. Moraes, M. Hauck, L.F. Guerreiro, D.D. Rossato, A.S. Varela, Jr., C.E. da Rosa and L.U. Signori "Effects of cryotherapy combined with therapeutic ultrasound on oxidative stress and tissue damage after musculoskeletal contusion in rats." Physiotherapy 102(4): 377-383.(2016).
Mendes, J.J., C.I. Leandro, D.P. Bonaparte and A.L. Pinto "A rat model of diabetic wound infection for the evaluation of topical antimicrobial therapies." Comparative Medicine 62(1): 37-48.(2012).
Milan, P.B., N. Lotfibakhshaiesh, M.T. Joghataie, J. Ai, A. Pazouki, D.L. Kaplan, S. Kargozar, N. Amini, M.R. Hamblin, M. Mozafari and A. Samadikuchaksaraei "Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells." Acta Biomater 45: 234-246.(2016).
Norte, G.E., S.A. Saliba and J.M. Hart "Immediate Effects of Therapeutic Ultrasound on Quadriceps Spinal Reflex Excitability in Patients With Knee Injury." Arch Phys Med Rehabil 96(9): 1591-1598.(2015).
Okoduwa, S.I., I.A. Umar, D.B. James and H.M. Inuwa "Appropriate Insulin Level in Selecting Fortified Diet-Fed, Streptozotocin-Treated Rat Model of Type 2 Diabetes for Anti-Diabetic Studies
" PLoS One 12(1): e0170971.(2017).
Olmos-Zuniga, J.R., M. Silva-Martinez, R. Jasso-Victoria, M. Baltazares-Lipp, C. Hernandez-Jimenez, I. Buendia-Roldan, J. Jasso-Arenas, A. Martinez-Salas, J. Calyeca-Gomez, A.E. Guzman-Cedillo, M. Gaxiola-Gaxiola and L. Romero-Romero "Effects of Pirfenidone and Collagen-Polyvinylpyrrolidone on Macroscopic and Microscopic Changes, TGF-beta1 Expression, and Collagen Deposition in an Experimental Model of Tracheal Wound Healing." Biomed Res Int 2017: 6471071.(2017).
Olyaie, M., F.S. Rad, M.-A. Elahifar, A. Garkaz and G. Mahsa "High-frequency and noncontact low-frequency ultrasound therapy for venous leg ulcer treatment: a randomized, controlled study." Ostomy Wound Manage 59(8): 14-20.(2013).
Park, J.H., S.H. Choi, S.J. Park, Y.J. Lee, J.H. Park, P.H. Song, C.M. Cho, S.K. Ku and C.H. Song "Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model." Mar Drugs 15(4).(2017).
Prather, J.L., E.K. Tummel, A.B. Patel, D.J. Smith and L.J. Gould "Prospective Randomized Controlled Trial Comparing the Effects of Noncontact Low-Frequency Ultrasound with Standard Care in Healing Split-Thickness Donor Sites." J Am Coll Surg(4.257-5.122) 221(2): 309-318.(2015).
Roper, J.A., R.C. Williamson, B. Bally, C.A.M. Cowell, R. Brooks, P. Stephens, A.J. Harrison and M.D. Bass "Ultrasonic Stimulation of Mouse Skin Reverses the Healing Delays in Diabetes and Aging by Activation of Rac1." J Invest Dermatol 135(11): 2842-2851.(2015).
Samuels, J.A., M.S. Weingarten, D.J. Margolis, L. Zubkov, Y. Sunny, C.R. Bawiec, D. Conover and P.A. Lewin "Low-frequency (< 100 kHz), low-intensity (< 100 mW/cm2) ultrasound to treat venous ulcers: A human study and in vitro experiments." The Journal of the Acoustical Society of America 134(2): 1541-1547.(2013).
Stadelmann, W.K., A.G. Digenis and G.R. Tobin "Physiology and healing dynamics of chronic cutaneous wounds." The American Journal of Surgery 176(2): 26S-38S.(1998).
Sundaram, J., B.R. Mellein and S. Mitragotri "An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes." Biophysical journal 84(5): 3087-3101.(2003).
Thawer, H.A., P.E. Houghton, M.G. Woodbury, D. Keast and K. Campbell "Computer-assisted and manual wound size measurement." Ostomy/wound management 48(10): 46-53.(2002).
van Rijswijk, L. "Measuring wounds to improve outcomes." AJN The American Journal of Nursing 113(8): 60-61.(2013).
Varghese, F., A.B. Bukhari, R. Malhotra and A. De "IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples." PloS one 9(5): e96801.(2014).
Walker, R.A. "Quantification of immunohistochemistry--issues concerning methods, utility and semiquantitative assessment I." Histopathology 49(4): 406-410.(2006).
White, J., N. Ivins, A. Wilkes, G. Carolan-Rees and K.G. Harding "Non-contact low-frequency ultrasound therapy compared with UK standard of care for venous leg ulcers: a single-centre, assessor-blinded, randomised controlled trial
" Int Wound J(2.594-2.432) 13(5): 833-842.(2016).
Wu, K.K. and Y. Huan "Streptozotocin-induced diabetic models in mice and rats." Curr Protoc Pharmacol Chapter 5: Unit 5 47.(2008).
Yao, M., H. Hasturk, A. Kantarci, G. Gu, S. Garcia-Lavin, M. Fabbi, N. Park, H. Hayashi, K. Attala, M.A. French and V.R. Driver "A pilot study evaluating non-contact low-frequency ultrasound and underlying molecular mechanism on diabetic foot ulcers." Int Wound J 11(6): 586-593.(2014).
Yates, C.C., P. Hebda and A. Wells "Skin wound healing and scarring: fetal wounds and regenerative restitution." Birth Defects Res C Embryo Today 96(4): 325-333.(2012).
校內:2023-12-31公開