| 研究生: |
徐民翰 Hsu, Min-Han |
|---|---|
| 論文名稱: |
聚苯乙烯複合奈米纖維電紡製程及其誘發同排聚丙烯穿晶形成能力之研究 Electrospun polystyrene composite nanofibers and its effect on the transcrystallization of isotactic polypropylene |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 電紡絲 、聚苯乙烯 、同排聚丙烯 、離子液體 、多醣體 |
| 外文關鍵詞: | electrospinning, polystyrene, isotactic polypropylene, ionic liquid, polysaccharide |
| 相關次數: | 點閱:87 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在高溫電紡絲時使用夾套式熱交換器維持溶液溫度,成功製備出奈米直徑的同排聚苯乙烯 (iPS)/對排聚苯乙烯 (sPS)、iPS/亂排聚苯乙烯 (aPS)複合纖維。當高分子在溶液中比例改變時,得到的纖維直徑會有所變化。研究發現,隨著sPS (或aPS)在纖維內所佔比例提高,纖維直徑皆有先升後降的趨勢。
以DSC分析電紡所得纖維之熱性質,發現複合纖維內含少量sPS (或aPS)即可提升iPS的結晶度,且升溫將iPS晶體熔化後,降溫可再誘發iPS產生結晶。
先前研究發現iPS纖維可誘發同排聚丙烯 (iPP)產生韌度較高的b晶體,本研究進一步得知iPS/sPS或iPS/aPS複合纖維也可誘發iPP產生b晶體,但隨著sPS (或aPS)在纖維內的含量增加,複合纖維所能誘發iPP產生的b晶核數量越少。
本研究亦使用離子液體溶解天然多醣體Guar gum (GG)後,以電紡絲法得到GG纖維,但不論如何調整電紡參數以及控制周圍環境條件,電紡過程中都無法得到穩定的cone-jet電紡模式。
Electrospun isotactic polystyrene (iPS)/syndiotactic polystyrene (sPS)、iPS/atactic polystyrene (aPS) composite nanofibers were successfully prepared by high-temperature electrospinning with a jacket heat exchanger which could make temperature of the solution in good control. Diameters of as-spun fibers were changed different by changing the polymer composition in the electrospinning solution. Based on our study, we found fiber diameter were increased and then decreased with increasing the content of sPS (or aPS) in the electrospinning solution.
We found that composite fibers containing a small amount sPS (or aPS) could improve the crystallizability of iPS within the fibers. After melting iPS crystals within the fibers, crystallization of iPS were enhanced.
Based on the previous studies, we knew that electrospun iPS fibers could induce the b-crystal form of iPP. We further found that iPS/sPS and iPS/aPS composite fibers could also induce transcrystallization of iPP to produce the b-form. However, the number of b-form nucleus were decreased with increasing the content of sPS (or aPS).
We also used ionic liquid to dissolve guar gum (GG) which is one kind of polysaccharide. GG fibers were obtaind by a high-temperature electrospinning process. However, a stable cone-jet mode of electrospinning were never successfully obtained.
[1] J. Brandup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, “Polymer handbook.” Wiley Interscience : New York (1999).
[2] T. Liu, J Petermann, “Multiple melting behavior in isothermally cold-crystallization isotactic polystyrene.” Polymer 42, 6453 (2001).
[3] Y. Duan, J. Zang, D. Shen, S. Yan, “In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene.” Macromolecules 36, 4874 (2003).
[4] J. Zang, Y. Duan, D. Shen, S. Yan, I. Noda, Y. Ozaki, “Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrated and two-dimensional infrared correlation spectroscopy.” Macromolecules 37, 3292 (2004).
[5] S. Cimmino, E. DiPace, E. Martuscelli, C. Silvestre, “Syndiotactic polystyrene – crystallization and melting behavior.” Polymer, 32, 1080 (1991).
[6] G. Guerra, V. M. Vitagliano, C. D. Rosa, V. Petraccone, P. Corradini, “Polymorphism in melt crystallized syndiotactic polystyrene samples.” Macromolecule, 23, 1539 (1990).
[7] A. M. Evans, E. J. C. Kellar, J. Knowles, C. Galiotis, C. J. Carriere, E. H. Andrews, “The structure and morphology of syndiotactic polystyrene injection molded coupons.” Polymer Engineering and Science, 37, 153 (1997).
[8] O. Greis, Y. Xu, T. Asano, J. Petermann, “Morphology and structure of syndiotactic polystyrene.” Polymer, 30, 590 (1989).
[9] C. De. Rosa, G Guerra, V. Petraccone, P. Corradini, “Crystal structure of the -form of syndiotactic polystyrene.” Polymer Journal, 23, 1435 (1991).
[10] E. J. C. Kellar, C. Galiotis, E. H. Andrews, “Raman vibrational studies of syndiotactic polystyrene. 1. Assignments in a conformational / crystallinity sensitive spectral region.” Macromolecules, 29, 3515 (1996).
[11] F. Auriemma, V. Petraccone, F. Dal Poggetto, C. De Rosa, G. Guerra, C. ManFredi, P. Corradini, “Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal () crystalline form.” Macromolecules, 26, 3772 (1993).
[12] C. Wang, C. L. Huang, Y. W. Cheng, Y. C. Chen, J. Shong, “Radiation effects and re-crystallization mechanism of syndiotactic polystyrene with beta’-crystalline form.” Polymer, 48, 7393 (2007).
[13] B. Lotz, J. C. Wittmann, A. Lovinger, “Structure and morphology of poly(propylene) : a molecular analysis.” Polymer 37, 4979 (1996).
[14] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene.” Progress in Polymer Science 16, 361 (1991).
[15] J. Varga, “-Modification of isotactic polystyrene : preparation,
structure, processing, properties, and application.” Journal of Macromolecular Science, Part B 41,1121 (2002).
[16] J. Varga, J. Karger-Kocsis, “Rules of supermolecular structure formation in sheared isotactic polypropylene melts.” Journal of Polymer Science, Part B : Polymer Physics 34, 657 (1996).
[17] J. Varga, J.Karger-Kocsis, “Interfacial morphologies in carbon-fibre-reinforced polypropylene microcomposites.” Polymer 36, 4877 (1995).
[18] F. Luo, C. Geng, K. Wang, H. Deng, F. Chen, Q. Fu, B. Na. “New understanding in tuning toughness of-polypropylene : the role of -nucleated crystalline morphology.” Macromolecules 42, 9325 (2009).
[19] Z. Su, M. Dong, Z. Guo, J. Yu, “Study of polystyrene and acrylonitrile-styrene copolymer as special -nucleating agents to induce the crystallization of isotactic polypropylene.” Macromolecules 40, 4217 (2007).
[20] G. Natta, P. Corradint, I. W. Bassi, “Crystal structure of isotactic polystyrene.” Nuovo Cimento 15, 68 (1960)
[21] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, “Dissolution of cellulose with ionic liquids.” Journal of the American Chemical Socirty 124, 4974 (2002).
[22] K. Y. Lee, L. Jeong, Y. O. Kang, S. J. Lee, W. H. Park, “Electrospinning of polysaccharides for regenerative medicine.” Advanced Drug Delivery Reviews 61, 1020 (2009).
[23] J. D. Schiffman, C. L. Schauer, “A review: electrospinning of biopolymer nanofibers and their applications.” Polymer Reviews 48, 317 (2008).
[24] G. Viswanathan, S. Murugesan, V. Pushparaj, O. Nalamasu, P. Majayan, R. J. Linhardt, “Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids.” Biomacromolecules 7, 415 (2006).
[25] S.- L. Quan, S.- G. Kan, I.- J. Chin, “Characterization of cellulose fibers electrospun using ionic liquid.” Cellulose 17, 223 (2009).
[26] S. Xu, J. Zhang, A. He, J. Li, H. Zhang, C. C. Han, “Electrospinning of native cellulose from nonvolatile solvent system.” Polymer 49, 2911 (2008).
[27] M. G. Freire, A. R. R. Teles, R. A. S. Ferreira, L. D. Carlos, J. A. Lopes-da-Silva, J. A. P. Coutinho, “Electrospun nanosized cellulose fibers using ionic liquids at room temperature.” Green Chemistry 13, 3173 (2011).
[28] M. Miyauchi, J. Miao, T. J. Simmons, J.- W. Lee, T. V. Doherty, J. S. Dordick, R. J. Linhardt, “Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose” Biomacromelecules 11, 2440 (2010).
[29] S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, Y. Ding, G. Wu, “Dissolution of cellulose with ionic liquids and its application: a mini-review.” Green Chemistry 8, 325 (2006).
[30] L. Meli, J. Milao, J. S. Dordick, R. J. Linhardt, “Electrospinning from room temperature ionic liquids for biopolymer fiber formation.” Green Chemistry 12, 1883 (2010).
[31] S. Mine, K. Prasad, H. Izawa, K. Sonoda, J.- I. Kadokawa, “Preparation of guar gum-based functional materials using ionic liquid.” Journal of Materials Chemistry 20, 9220 (2010).
[32] M. Mazza, D.- A. Catana, C. Vaca-Garcia, C. Cecutti, “Influence of water on the dissolution of cellulose in selected ionic liquids.” Cellulose 16, 207 (2009).
[33] K. Prasad, H. Izawa, Y. Kaneko, J. Kadokawa, “Preparation of temperature-induced shapeable film material from guar gum-based gel with an ionic liquid.” Journal of Materials Chemistry 19, 4088 (2009).
[34] S. Fendt, S. Padmanabham, H. W. Blanch, J. M. Prausnitz, “Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents.” Journal of Chemical & Engineering data 56, 31 (2011).
[35] F. Wendler, F. Meister, D. Wawro, E. Wesolowska, D. Ciechanska, B. Saake, J. Puls, N. L. Moigne, P. Navard, “Polysaccharide blend fibers formed from NaOH, N-methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate.” FIBRES & TEXTILES in Eastern Europe 18, 21 (2010).
[36] S. F. Fennessey, R. J. Farris, “Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yams.” Polymer 45, 4217 (2004).
[37] T. Yang, Y. Yao, Y. Lin, B.Wang, R. Xiang, Y.Wu, D.Wu, “Electrospinning of polyacrylonitrile fibers from ionic liquid solution” Applied Physics A: Materials Science & Processing 98, 517 (2010).
[38] 朱有玲, “電紡同排聚苯乙烯及其複合纖維製程與纖維性質分析”, 國立成功大學碩士論文 (2012).
[39] 吳怡君, “不同電紡纖維對聚丙烯穿晶形成能力的影響”, 國立成功大學碩士論文 (2011).