| 研究生: |
張嘉峰 Chang, Jia-Feng |
|---|---|
| 論文名稱: |
應用原子力顯微術於PC12類神經細胞之生物力學研究 Application of Atomic Force Microscopy to Biomechanics of PC12 Neuron-like Cell |
| 指導教授: |
林宙晴
Lin, C.-C. K. 朱銘祥 Ju, M.-S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | Non-Hertzian approach 、原子力顯微鏡 、表面楊氏係數 、神經細胞 |
| 外文關鍵詞: | Atoms force microscope, Non-Hertzian approach., PC12 cell |
| 相關次數: | 點閱:122 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著組織工程與神經科學的興起,神經再生的研究已不再限於理論的階段而進入了實際的應用。其中的關鍵在於如何引導神經元往正確方向再生,且期待此再生程序能夠快速完成。雖已發展出輔助的神經導管以及許多促進再生的藥物,但是針對神經細胞的機械特性及外在物理性刺激對神經再生影響的研究仍在多方發展中。
本研究著眼於細胞力學的領域,利用原子力顯微鏡建立一套能準確量測到細胞力學特性的實驗方法,能夠估測細胞的機械特性,進而評估細胞整體力學模型。傳統計算細胞表面楊氏係數由赫茲模型(Hertz model)得到,但其方法存在著一些問題。本研究為了探討神經再生模型,量測的試樣為PC12類神經細胞,加入神經生長因子(nerve growth factor),使其誘導出神經軸突,首先對神經細胞本體以廣泛、密集範圍的單點壓痕量測,由非赫茲方法(Non-Hertzian Approach)計算各區域的表面楊氏係數的大小與分布變化性,將結果與文獻比較,以提高本實驗方法的可信度,之後對神經軸突廣泛範圍壓痕測試,得到其各部份的機械特性,希望其結果能提供建立周邊神經再生理論模型所需要的資料。
實驗結果與細胞生物學理論一致,所量測的細胞各區域表面楊氏係數雖略大於文獻中的記載,但亦證明此方法有效且可信,後續研究將可能提供神經細胞機械性質量測一個有效的方法。
In recent years, the fast progress of tissue engineering and neuro-science enhances the research of nerve regeneration. In the research of nerve regeneration process, morphological change and biochemical reaction had been investigated widely, but the mechanical properties and effects of physical stimulations to growth of neural cells remains unclear.
In this study, an atomic force microscopy was employed to develop accurate technique for measuring the mechanical properties of living cells and to build the mechanical model of the whole cell.
The existing method of analyzing AFM indentation data is based on a simplified Hertz theory that requires unrealistic assumptions about cell indentation experiment. To investigate the regeneration of Neuron-like PC12 cells were cultivated and facilitated by nerve growth factor to induce axon. Single-point indentations on large and small region of PC12 cell body were performed and a non-Hertzian approach was adopted to calculate the distribution of apparent Young’s modulus. A large range indentation on axon was conducted the apparent Young’s modulus was calculated by the same method. A biomechanical model of PC12 cell was built. Experimental results revealed that the distribution of apparent Young’s modulus is consistent with the structure of the PC12 cell although the apparent Young’s moduli were slightly larger than the data found in the literature. The non-Hertzian method may be an effective and reliable method for estimating the mechanical properties of the cell.
[1] 李宣書 物理雙月刊(廿四卷三期)pp.430-435,2001 年 6 月
[2] Burridge, K. , Fath, K., Kelly, Nuckolls, G. ,Turner, C. Annu. Rev. Cell
Biol., vol4, pp. 487-525, 1988.
[3] Geoffrey, M. C., The Cell:A Molecular Approach, ASM Press, Harvard
Medical School, pp. 1-673, 1997.
[4] Anselme. K., “Osteoblast adhesion on biomaterials”. Biomaterials, vol.
21(7):pp. 667-81, 2000.
[5] Alan Stevens, James Lowe原著,朱家瑜編譯, '人體組織學', Chap.6 pp 203, 2000.
[6] Greene, L.A , Tischler, A.S., “Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.” Proc Natl Acad Sci USA; vol.73, pp. 2424-8, 1976.
[7] Crick, F.H.C., Hughes, A.F.W., “The physical properties of cytoplasm: a study by means of the magnetic particle method. Part I. Experimental.” Experimental Cell Research, vol.1, pp. 37–80, 1950.
[8] Mitchison. J.M., Swann. M.M., “The mechanical properties of the cell
surface I. The cell elastimeter.” Journal of Experimental biology, vol. 31
pp. 44–460, 1954.
[9] Band. R.P., Burton. A.C., “Mechanical properties of the red cell membrane. I. Membrane stiffness and intracellular pressure. ”Biophysical
Journal vol. 4, pp. 115-117, 1964.
[10] Ashkin. A. Science, vol. 210, pp. 1081-1088, 1980.
[11] Harris, A.K., Stopak, D., Wild, P., “Fibroblast traction as a mechanism for collagen morphogenesis”, Nature, vol. 270, pp. 249-251, 1981.
[12] Petersen, N.O., McConnaughey, W.B., Elson,E.L., “Dependence of locally measured cellular deformability on position on the cell,temperature, and cytochalasin B”. PNAS 79 vol.17, pp. 5327–5331. 1982.
[13] Charras, G. T., Lehenkari, P. P., Horton, M. A. Ultramicroscopy, vol. 86,
pp. 85-95, 2001.
[14] Oliviber,T.,Albrecht,O. “Comparison of the mechanical properties of normal and transformed fibroblasts.” Bioreheology, vol.34 Nos.4/5 pp. 309-326 , 1997.
[15] Galbraith,C.G., Sheetz, M.P. “A micromachined device provides a new bend on fibroblast traction forces” PNAS USA, Vol.94, pp. 9114-9118, 1997.
[16] Martin, G., Andreas, R., Martin, S., Jürgen Rühe., Johannsmann, D.
Surf.Interface Anal., vol27, pp. 572-576, 1999.
[17] Hoben, G., et al., “Quantification of varying adhesion levels in Chondr
-ocytes using the cytodetacher”. Annals of Biomedical Engineering, vol
30(5): pp.703-12, 2002.
[18] Emiel A.G. Peeters、Cees W.J. Oomens、Carlijn V.C. Bouten、Dan L.
Bader、Frank P.T. Baaijens “Viscoelastic Properties of Single Attached
Cells Under Compression” APRIL 2005, vol. 127 . pp. 237-243, 2005.
[19] H Hertz , Jreine Angew. Mathematick, vol.92, pp. 156-171, 1882.
[20] Sneddon, int ., J.Eng sci, vol. 3, pp. 37-41, 1965.
[21] Briscoet, B. J., Sebastian, K. S. and Adamst, M. J., “The effect of indenter geometry on the elastic response to indentation”, J. Phys. D Appl. Phys., vol. 27, pp. 1156-1162, 1994.
[22] Radmacher, M., Fritz, M., Kacher, C.M., Cleveland, J.P., Hansma,P.K.,
“Measuring the viscoelastic properties of human platelets with the
atomic force microscope.” Biophysi. J. vol.70, pp. 556–567. 1996.
[23]Radmacher, M., “Measuring the elastic properties of biological samples with the AFM.” IEEE Engineering in medicine and biology, vol. 16, Issue 2, pp. 47–57, 1997.
[24] Costa, K. D., Yin, F. C., “Analysis of Indentation:“Implications for Measuring Mechanical Properties With Atomic Force Microscopy.” J. Biomech. Eng., vol. 121, pp. 462–471, 1999.
[25] Rotsch, C., Jacobson, K., M. Radmacher M, “Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts” PNAS USA, vol.96, pp. 921-926, 1999.
[26] Mathur,A., “Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic microscopy” J. of Biomechanics, vol.34, pp1545-1553, 2001.
[27] 李宗翰, 單軸應變對3T3纖維母細胞機械特性影響之研究, 國立成功大學微機電系統工程研究所碩士論文.
[28] Kevin D. C. , Alan J. S., Frank C-P. Yin, ” Non-Hertzian Approach to
Analyzing Mechanical Properties of Endothelial Cells Probed by Atomic
Force Microscopy” Journal of Biomechanical Engineering, vol. 128, pp. 176 -184, APRIL 2006.
[29]Y. C. Fung, “Biomechanics: Mechanical Properties of Living Tissues, 2nd ed”, Springer-Verlag, pp. 277-292, 1972.
[30] J-L. Fan, J.-Q. Li, M.-S. Ju, and C.-C. K. Lin, “In vivo biomechanical analyses of peripheral nerves,” Proc. 2002 Conference on BME Technology, Kaohsiung, December 14-15, 2002.
[31] R.J., M.-S. Ju, and C.-C. K. Lin, “Biomechanics of damaged and injured peripheral nerves” Proc. 2003 Conference on BME Technology.
[32] Satcher Jr., R.L., Dewey Jr., C.F.,. Theoretical estimates of
mechanical properties of the endothelial cell cytoskeleton. Biophysical
Journal, vol. 71 (1), pp. 109–118, 1996.
[33] Coughlin, M.F., Stamenovic, D., A prestressed cable network
model of the adherent cell cytoskeleton. Biophysical Journal, vol.84 (2),
pp. 1328–1336, 2003.
[34] Boey, S.K., Boal, D.H., Discher, D.E., Simulations of the e
rythrocyte cytoskeleton at large deformation. I. Microscopic models.
Biophysical Journal, vol.75 (3), pp. 1573–1583, 1998.
[35] Binning, G.,H. Rohrer H., “Scanning tunneling microscopy from birth to adolescence.”, Rev. Modern Physics, vol. 59, pp. 615-619, 1987.
[36] Poggi, M. A., Gadsby, E. D, Bottomley, L. A., “Scanning probe
microscopy”, Anal. Chem., vol.76, pp. 3429-3444, 2004.
[37] Morris V. J., A. R. Kirby A. R., Gunning A. P, “Atomic force
microscopy for biologists”, Imperial College Press: London, 1999.
[38] Johannes Diderik van der Waals, ”Nobel Lectures, Physics, Elsevier Publishing Company, Amsterdam”, pp. 1901-1921, 1967.
[39] Park Scientific Instruments Corp., Users Guide to Autoprobe CP, Part II,
[40] NT-MDT Corp., SPM introduction, http://www.ntmdt.ru
[41] 原子力顯微鏡成像中文簡易操作手冊,成功大學醫學工程所生醫感
測實驗室。
[42] Veeco Instruments , https://www.veecoprobes.com.
[43] Sader, J. E. , Larson ,I., Mulvaney, P., White, L.R., ’’Method for the
Calibration of Atomic Force Microscope Cantilevers “Rev.Sci.vol.
66, pp. 3789-3798, 1995.
[44] Peter, H., Ilka, R., Holger, E., Michael, S., Wolfgang S., Solon, T., “Defined adhesion and growth of neurones on artificial structured substrates.”, Electrochimica Acta. vol. 47, pp. 299–307, 2001.
[45] Y. Shen1, J. L. Sun1, A. Zhang1, J. Hu1, L. X. Xu , ‘’Shape
Recovering of Live Endothelial Cell under Atomic Force Microscopy
Imaging’’, Proceedings of the 26th Annual international conference the IEEE EMBS, San Francisco ,CA USA September 1-5 2004.
[46] Alberts et al, “Molecules of the cytoskeleton. “ London 1994.