| 研究生: |
謝明哲 Hsieh, Ming-che |
|---|---|
| 論文名稱: |
鈦合金奈米級表面粗糙差異對表面性質及細胞初期生長的影響 The influence of nano-surface roughness of titanium alloy upon surface properties and initial cell growth |
| 指導教授: |
王清正
Wang, Ching-Cheng 李澤民 Lee, Tse-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 纖維細胞 、鈦六鋁四釩 、細胞黏附強度 、奈米級表面粗糙度 |
| 外文關鍵詞: | Nano-surface roughness, Fibroblast, Cell adhesive force, Ti6Al4V |
| 相關次數: | 點閱:227 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在探討鈦六鋁四釩合金奈米表面粗糙差異對於老鼠纖維細胞(NIH-3T3)短期的體外反應,鈦合金表面經矽砂紙的溼式研磨及氧化鋁粉的拋光程序,產生的表面粗糙度為(Ra = 2.31, 3.67, 4.65, 9.52, 18.31 and 28.02nm),經研磨及清洗後,每個試片需經高溫400℃ 45分鐘的鈍化處理。鈦合金表面性質分析的方法有下列四種,奈米級表面粗糙度量测使用掃描式電子顯微鏡(SPM),表面氧化層的化學特性分析使用X光光電子分析儀(XPS),表面濕潤性的量测使用靜態接觸角評估,表面電位是使用恆電位儀。藉由掃描式電子顯微鏡量測後,發現經熱處理後奈米表面粗糙度會增加(Ra = 2.75, 3.98, 5.26, 11.72, 20.84 and 30.34 nm),而表面溼潤性也隨著六種不同鈦合金表面有顯著的差異,接觸角隨著粗糙度的增加而增加。對於細胞相容性的評估,細胞黏附、細胞增殖及細胞型態經過一段時間培養,使用細胞刮取儀(Cytodetachment apparatus)量测各別單一細胞初期的黏附力,細胞的型態利用場放射型掃描式電子顯微鏡作觀察,細胞的增殖情形則使用MTT的方式做量测,藉由細胞刮取儀量测的結果,六種不同奈米粗糙表面對於細胞的初期黏附力範圍為0.055μN to 0.193μN,細胞黏附力隨著表面的粗糙度而增加,而對於六種不同處理的群組,細胞增殖的表現則沒有統計上顯著的差異,因此從上敘的結果,奈米表面粗糙度不僅影響纖維細胞與鈦合金表面的交互作用也影響表面性質如濕潤性及表面電位。
This study aims at investigating the effect of nano-surface roughnesss of Ti-6Al-4V alloy on the shot-team responses of Murine NIH-3T3 fibroblasts. Titanium alloy disks are prepared by wet grinding with grit silicon carbide paper and polishing with Al2O3 powder to the surface roughness with Ra values of 2.31, 3.67, 4.65, 9.52, 18.31 and 28.02nm, respectively. After polishing and cleaning, each specimen is passivated by 400℃ air for 45 min. Readings are collected for the nano-surface roughness, surface chemical properties, wettability, and surface potential. The nano-surface roughness is measured by scanning probe microscope (SPM), chemical properties of surface oxide by X-ray Photoelectron Spectroscopy (XPS), wettability by static contact angle assessment method, and surface potential by Zeta Potential analyzer. It has been observed the heat-treatment increased the surface roughness with corresponding Ra values of 2.75, 3.98, 5.26, 11.72, 20.84 and 30.34nm. Significant differences in wettability have been detected among six sample groups. The contact angle increases with the roughness. Cytocompatibility is assessed using cell adhesion, cell proliferation and morphology. While cytodetachment method measures the initial adhesive force for individual cells, Scanning Electron Microscopy (Fe-SEM) is employed to take images of cell morphology, and cell proliferation is measured by MTT. The initial cell adhesive force of fibroblasts ranges from 0.055μN to 0.193μN for samples of six different nano-surface roughness. It has been observed that cell adhesive force increases with the roughness. Differences among expressions of cell proliferation on all six groups of samples are statistically insignificant. Experimental results revealed that nano-surface roughness affect not only the fibroblast-titanium interaction but also wettability and surface potential.
[1] Bruni S, Martinesi M, Stio M, Treves C, Bacci T, Borgioli F. Effects of surface treatment of Ti-6Al-4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomaterialia, Vol. 1,
pp. 223-234, 2005.
[2] Ku C-H, Pioletti DP, Browneb M, Gregson PJ. Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. Biomaterials, Vol.
23,pp. 1447–1454, 2002.
[3] Perla V, Webster TJ. Better osteoblast adheasion on nanoparticulate selenium-A promising orthopedic implant material. Wiley InterScience, Vol. 9, 2005.
[4] Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, Vol. 24,pp. 4663-4670. 2003.
[5] Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis YF. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials, Vol. 22, pp. 1241-1251, 2001.
[6] Lee TM, Chang EC, Yang CY. Effect of passivation on the dissolution behavior of Ti6Al4V and vacuum-brazed Ti6Al4V in Hank’s ethylene diamine tetra-acetic acid solution PartΙIon release. Journal of Materials
science: Materials in Medicine, Vol. 10, pp. 541-548, 1999.
[7] Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxide on osteoblast
responses. Biomaterilas, Vol. 25, pp. 4087-4103, 2004.
[8] Liu X, Chub PK, Dinga C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science
and Engineering, Vol. 47, pp. 49-121, 2004.
[9] Kim H j, Kim S H, Kim M S, Lee E L,Oh W M. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells. Wiley InterScience, Vol. 10, pp.
366-373, 2005.
[10] H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura. J. Biomed. Mater. Res, Vol. 32, pp. 409, 1996.
[11] Lacefield WA. Materials characteristics of uncoated/ceramic-coated
mplant materials. Adv Dent Res, Vol. 13, pp. 21-26, 1999.
[12] Albrektsson T, Branemark P-I, Hansson HA, Lindstrom J. sseointegrated
titanium implants. Acta Orthop Scand, Vol. 52, pp. 155-170, 1981.
[13] Schneider G B, Perinpanayagam H, Clegg M, Zaharias D, Seabold J. Implant surface roughness affect osteoblast gene expression. Biomaterials & Bioengineering, Vol. 82(5), pp. 372-376, 2003.
[14] Eisenbarth E, Meyle J, Nachtigall W, Breme. Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials,
Vol. 17, pp. 1399-1403, 1996.
[15] Ponsonnet L, Comte L, Othman A, Lagneau C, Charbonnier M, Lissac M, Jaffrezic N. Effect of surface topography and chemistry on adhesion, orientation and growth of fibroblasts on nickel–titanium substrates.
Materials Science and Engineering C, Vol. 21, pp.157-165, 2002.
[16] Khan SP, Aune GG, Newaz GM. Influence of nanoscale surface roughness on neural cell attachment on silicon. Nanomedicine: Nanotechnology, Biology, and Medicine, Vol. 1, pp. 125-129, 2005.
[17] Kaiyong C, J¨org B, Klaus DJ. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?. Colloids and Surfaces B: Biointerfaces, Vol. 49, pp. 136-144, 2006.
[18] Lim JY, Hansen JC, Siedlecki CA, Runt J and Donahue HJ. Human foetal osteoblastic cell response to polymer-demixed nanotopographic
interfaces. J.R: Soc. Interface, Vol. 10, pp.1-12, 2004.
[19] Webb K, Hlady V, A.Tresco P. Relative importance of surface wettability and charged functional group on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. Journal of Biomedical Materials Research,
Vol. 41, pp. 422-430, 1998.
[20] Lim JY, Hansen CJ, Siedlecki CA, Runt J, Donahue HJ. Human fetal
osteoblastic cell response to polymer-demixed nanotopographic
interfaces. J.R.Soc. Interface ,2004.
[21] Lim YJ, Oshida Y. Initial contact angle measurements on variously treated dental/medical titanium materials. Bio-Medical Materials and Engineering, Vol. 11, pp. 325-341, 2001.
[22] MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL. Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption,and MG63 cell attachment. Biomaterials, Vol. 25, pp. 3135-3146, 2004.
[23] Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization, Vol. 49, pp. 73-79, 2002.
[24] Lawrence J, Hao L, Chew HR. On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surface & Coatings Technology, Vol. 200,
pp. 5581-5589, 2006.
[25] Ulusoy U, Yekeler M. Correlation of the surface roughness of some industrial minerals with their wettability parameters. Chemical Engineering
and Processing, Vol. 44, pp. 557-565, 2005.
[26] Meyer U, Szulczewski DH, Moller K, Heide H, Jones DB. Attachment kinetics and differentiation of osteoblasts on different biomaterials. Cell Mater, Vol. 3, pp. 129–40, 1993.
[27] Van Kooten TG, Schakenraad JM, Van der Mei HC, Busscher HJ. Influence of substratum wettability on the strength of adhesion of human
fibroblasts. Biomaterials, Vol. 13, pp. 897–904, 1992.
[28] Redey SA, Razzouk S, Rey C, Bernache-Assollant D, Leroy G,Nardin M, Cournot G. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated and natural calcium carbonate: relationship to surface energy. J
Biomed Mater Res, Vol. 45, pp. 140–147, 1999.
[29] Redey SA, Michel N, Bernache-Assollant D, Christian R, Philippe D, Laurent S, Pierre JM. Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. J Biomed Mater Res, Vol. 50, pp. 353–364, 2000.
[30] Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials
Science and Engineering C, Vol. 23, pp. 551-560, 2003.