| 研究生: |
高世萍 Kao, Shih-Ping |
|---|---|
| 論文名稱: |
銻摻雜氧化鋅奈米結構的製備與物性研究 Preparation and physical properties of Sb doped ZnO nanostructures |
| 指導教授: |
黃榮俊
Huang, J.C.A. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 氧化鋅 、電化學 |
| 外文關鍵詞: | ZnO, electrochemical deposition |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用電化學沉積法(electrochemical deposition)製程製備銻摻雜氧化鋅奈米結構。在循環伏安法確定沉積電位範圍的基礎上,探討了溶液濃度、沉積電位、溶液pH值、成長溫度等實驗參數對材料形貌、成份、晶化質量以及光學性質的影響,藉此確定最適合沉積取向銻摻雜氧化鋅奈米柱的實驗條件。在此基礎上於n型基板上沉積ZnO:Sb奈米柱,並測量它們的I-V特性曲線,以確認ZnO:Sb奈米柱與n型基板是否形成p-n接面。
研究結果表明:SbCl3濃度高於0.125mM,樣品中會生成Sb2O3,SbCl3濃度低於0.125mM,Sb2O3消失,但ZnO:Sb奈米柱的成長趨於稀疏、覆蓋率低;沉積電位低於-1V,奈米結構結晶質量下降,隨著電位的提高,奈米柱的(002)取向性變差,並有無規律奈米團簇產生;pH值為5時可形成六方奈米柱狀結構,pH值過低結晶性急劇惡化,易生成直徑超過300nm的巨型柱狀結構,pH值過高奈米結構的晶化質量和(002)取向性也均變差;沉積溫度低於70℃時,鋅離子的析出受到抑制,而只產生銻氧化物的結晶顆粒,隨著溫度的升高晶化質量和取向性隨之逐漸變好,但升至85℃、90℃,沉積速率加快導致結晶質量和取向性又再次惡化;ZnO種子層的存在有助於改善ZnO:Sb奈米柱的(002)取向性。
本研究總結得出的銻摻雜氧化鋅奈米柱的理想沉積條件為:ZnO的IBS薄膜作為種子層,SbCl3濃度為0.125mM、沉積電位為-1V、pH值為5、沉積溫度為75℃,沉積時間約一小時,可沉積獲得Sb摻雜量約3.51at.%,直徑約50nm,具有良好(002)取向性的ZnO:Sb奈米柱。
對ITO/ZnO種子層/ZnO nanorod和ITO/ZnO種子層/ZnO:Sb nanorod的I-V特性曲線測量結果表明:ITO/ITO、ZnO種子層/ZnO種子層、ITO/ZnO種子層的I-V特性曲線為線性,ITO/ZnO nanorod與ZnO/ZnO nanorod的I-V特性曲線為線性相關,這表明In電極與ITO和ZnO種子層,ZnO種子層與ITO和ZnO奈米柱均形成歐姆接觸;而ITO/ZnO:Sb nanorod與ZnO種子層/ZnO:Sb nanorod的I-V特性曲線均為整流趨勢,這表明銻摻雜氧化鋅奈米柱與n型基板形成p-n接面,從而證明Sb的摻雜成功獲得了p型ZnO。
In this research, ZnO:Sb nanostructures were prepared by electrochemical deposition. On the basis of the deposition potential range determined using cyclic voltammetry, the influences of SbCl3 solution concentration, deposition potential, pH value, and growth temperature on the morphology, composition, crystalline quality, and optical properties of ZnO:Sb nanostructures were studied systematically. The optimal deposition parameters for the textured ZnO:Sb nanorods were concluded accordingly and were adopted to deposit the ZnO:Sb nanorods on the n-type substrates. Then the I-V curves for these samples were measured to explore whether the p-n junctions were formed.
The research indicates that (1) the adoption of the SbCl3 solution with concentrations higher than 0.125 mM can result in the precipitation of Sb2O3, while the sparse single-phase ZnO:Sb nanorods can be obtained for the concentration lower than 0.125 mM. (2) For the deposition potentials of <-1V, the crystalline quality of the nanostructures was bad. With the potential increasing to >-1V, the (002) texture for the nanorod diminished gradually with the appearance of the irregular nanoclusters. (3) Nanorods with a hexagonal structure can be achieved at a pH value of 5. Lower pH value can result in lower crystalline quality and larger nanorods with diameters more than 300 nm, while both the crystalline quality and the (002) orientation deteriorated for the pH values higher than 5. (4) When the deposition temperatures below 70 ℃ were adopted, the formation of ZnO was limited and only the grains of Sb oxides were formed. With the increasing of deposition temperature, the crystalline quality and the texture of ZnO:Sb nanorods were improved gradually, But deteriorated again due to the increase of the deposition rate with the temperature increasing further to about 85℃. (5) The existence of ZnO seedlayer is helpful for improving the (002) orientation of ZnO:Sb nanorods.
Based on the detailed investigations, the optimal deposition parameters for the ZnO:Sb nanorod can be concluded as follows: (1) The ZnO film prepared by IBS deposition is used as seed layer;(2) The SbCl3 concentration, the deposition potential, the pH value, the deposition temperature, the deposition duration are determined as 0.125 mM, -1 V, 5, 75 ℃, and 1 hr, respectively. The (002) textured Zn96.5Sb3.5O nanorods with a diameter of roughly 50 nm were obtained by adopting these deposition parameters.
The I-V features of the ITO/ZnO seed layer/ZnO nanorod and the ITO/ZnO seed layer/ZnO:Sb nanorod were measured. It was found that the I-V dependences for ITO/ITO, ZnO seed layer/ZnO seed layer, and ITO/ZnO seed layer were totally linear and those of ITO/ZnO nanorod and ZnO seed layer/ZnO nanorod were basically linear, which indicates the ohmic contact of the In/ITO, In/ZnO seed layer, ZnO seed layer/ITO, ZnO seed layer/ZnO nanorod.However, the I-V curves of ITO/ZnO:Sb nanorod and ZnO seed layer/ZnO:Sb nanorod showed the rectifying tendency. This indicates that the ZnO:Sb nanorod/n-type substrates were p-n junctions and p-type ZnO were fabricated successfully through Sb doping.
[ 1 ] Lu, J.G., P. Chang, and Z. Fan, Quasi-one-dimensional metal oxide materials-Synthesis, properties and application. Materials Science and Engineering:R, Reports, 52(1-3), p.29-91(2006)
[ 2 ] Gudiksen, M.S., et al, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415(6872), p.17-620( 2002)
[ 3 ] E. Comini, G. Faglia, and G. Sberveglieri, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelt. Appl. Phys. Lett. 81, 1869-1871(2002)
[ 4 ]Duan, X., et al., High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature, 2003. 425(6955), 274-278
[ 5 ] Y. J. Zeng, Z.Z. Ye, J.G. Lu, W.Z. Xu, L.P. Zhu, B.H. Zhuo, Identification of acceptor states in Li-doped p-type ZnO thin films, Appl. Phys. Lett. 89, 042106 (2006)
[ 6 ] U. Ozgur, YA. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dooan, V. Avrutin, S. J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301(2005)
[ 7 ] H. Ohta, M. Orita, M. Hirano, and H. Hosono, Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO, J. Appl. Phys. 89, 5720(2001)
[ 8 ] J B Kiml, D Byunl, S Y Ie, D H Park, W K Choi, Ji-Won Choi and Basavaraj Angadi, Cu-doped ZnO-based p-n heterojunction light emitting diode, Semicond. Sci. Technol. 23, 095004(2008)
[ 9 ] H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, S. Y. Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett. 88, 202108 (2006)
[10] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, Nitrogen-induced defect in ZnO:N grown on sapphire substrate by gas source MBE, J. Crystal Growth 209, 526(2000)
[11] Y. Yan, S.B. Zhang, S.T. Pantelides, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Rev. Lett. 86,5723(2001)
[12] Z. G. Yu, P. Wu, H. Gong, Control of p- and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering, Appl. Phys. Lett. 88, 132114 (2006)
[13] D. C. Look, G. M. Renlund and R. H. Burgener Ⅱ, and J. R. Sizelove, As-doped p-type ZnO produced by an evaporation/sputtering process, Appl. Phys. Lett. 85, 5269(2004)
[14] C.H. Park, S.B. Zhang, S.H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perpective, Phys. Rev. B, 66, 073202(2002)
[15] D.C. Look, R.L. Jones, J.R. Sizelove, N.Y. Garces, N.C. Giles, L.E. Halliburton, The path to ZnO devices: donor and acceptor dynamics, Phys. Status Solidi A, 195, 171(2004)
[16] C.G. Van de Walle, D.B. Laks, G.F. Neumaark, S.T. Pantelides, First-principle calculations of solubilities and doping limits: Li, Na, and N in ZnSe, Phys. Rev. B, 47, 9425(1993)
[17] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98, 041301(2005)
[18] S. Limpijumnong, S. B. Zhang, S. H. Wei, C. H. Park, Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide, Phys. Rev. Lett. 92, 155504(2004)
[19] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy, Appl. Phys. Lett. 87, 152101(2005)
[20] F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam Epitaxy, Appl. Phys. Lett. 87, 252102(2005)
[21] L. J. Mandalapu, F. X. Xiu, Z. Yang, D. T. Zhao, and J. L. Liu, p-type behavior from Sb-doped ZnO heterojunction photodiodes, Appl. Phys. Lett. 88, 112108(2006)
[22] S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, and J. L. Liu, Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes, Appl. Phys. Lett. 92, 152103(2008)
[23] Xinhua Pan , Zhizhen Ye, Jiesheng Li, Xiuquan Gu, Yujia Zeng, Haiping He, Liping Zhu, Yong Che, Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition, Appl. Surf. Sci. 253, 5067-5069(2007)
[24] Peng Wang, Nuofu Chen, Zhigang Yin, Fei Yang, Changtao Peng, Fabrication and properties of Sb-doped ZnO thin films grown by radio frequency (RF) agnetron sputtering, J. Cryst. Growth, 290, 56–60(2006)
[25] Saliha Ilican, Yasemin Caglar, Mujdat Caglar, Fahrettin Yakuphanoglu,
Jingbiao Cui, Preparation of Sb-doped ZnO nanostructures and studies on
some of their properties, Physica E, 41, 96-100 (2008)
[26] C.H. Zang , D.X. Zhao, Y. Tang, Z. Guo, J.Y. Zhang, D.Z. Shen, Y.C. Liu, Acceptor related photoluminescence from ZnO:Sb nanowires fabricated by chemical vapor deposition method, Chem. Phys. Lett. 452, 148-151(2008)
[27] Yamamoto T., Katayama-Yoshida, Hiroshi, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys. 38, L166-L169(1999)
[28] J. Zhong, S. Muthukumar, Y. Chen, and Y. Lu, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition. Appl. Phys. Lett. 83, 3401-3403(2003)
[29] Seung Yong Bae, Chan Woong Na, Ja Hee Kang, and Jeunghee Park, Comparative structure and optical properties of Ga-, In, and Sn-doped ZnO nanowires synthesized via thermal evaporation, J. Phys. Chem. B, 109, 2526–2531( 2005)
[30] 張波, 東華大學等離子物理所, 2006
[31] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnage, Mechanisms behind green photoluminescence in ZnO pgosphor powders, J. Appl. Phys. 79, 7983(1996)
[32] A. F. Kohan, G. Ceder, D. Morgan, and Chris G. Van de Walle, First-principles study of native point defects in ZnO, Phys. Rev. B, 61, 15019(2000)
[33] Walukiewicz W., Defect formation and diffusion in heavily doped semiconductors, Phys. Rev. B, 50, 5221-5225(1994)
[34] Eric A. Meulenkamp, Synthesis and Growth of ZnO Nanoparticles, J. Phys. Chem. B, 102 (29), 5566-5572 (1998)
[35] 黎佩玲,奈米氧化鋅的製備與應用, 中國紡織工業研究中心,(2003)
[36] 馬正先、江玉芝、張士成, 韓躍新,納米氧化鋅製備原理與技術,
中國輕工業出版社
[37] Partho Sarkar, Patrick S. Nicholson, Electrophoretic deposition (EPD)
:mechanisms, kinetics, and application to ceramics, J. Am. Chem. Soc., 79, 1987 (1996)
[38] D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Thomson Laering, Inc, Singapore, 563 (1998)
[39] 沈正國, 屏東教育大學 應用物理系光電暨材料所(2011)
[40] 李紹先, 國立台灣大學 材料科學與工程學所(2006)
[41] http://www.consultrsr.com/index.htm
[42] Masanobu Izaki, Takashi Omi, Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction, J. Electrochem. Soc., 144, 1949-1952 (1997)
[43] Sophie Peulon, Daniel Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Advanced Materials, 8, 166–170(1996)
[44] Sophie Peulon and Daniel Lincot, Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions, J. Electrochem. Soc. 145, 3, 864-874 (1998)
[45] T. Pauporte, D. Lincot, J. Electroanalytical Chemistry, 517, 54 (2001)
[46] Masanobu Izaki1, and Takashi Omi, Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett. 68, 2439 (1996)
[47] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO, J. Phys. Chem. B, 105, 3350-3352 (2001)
[48] A. A. Ismail, A. El-Midany, E. A. Abdel-Aal and H. El-Shall, Application of statistical design to optimize the preparation of ZnO nanoparticles via hydrothermal technique, Materials Letters. 59, 1924-1928 (2005)
[49] Y. H. Tong, Y. C. Liu, L. Dong, D. X. Zhao, J. Y. Zhang, Y.M. Lu, D. Z. Shen and X. W. Fan, Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique, J. Phys. Chem. B,110, 20263-20267 (2006)
[50] Soshin Chikazumi and Stanley H. Charap “Physics of Magnetism”(1972)
[51] http://cmnst.ncku.edu.tw/bin/home.php 成功大學微奈米中心儀器使用手冊
校內:2013-07-29公開