| 研究生: |
洪綾蔓 Hung, Ling-Man |
|---|---|
| 論文名稱: |
牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之改進:結合單純疱疹病毒VP22基因及使用CpG核苷佐劑之評估 Improvement of DNA vaccine of bovine ephemeral fever viral glycoprotein G gene: effect of the combination with the herpes simplex virus VP22 gene and use of CpG oligodeoxynucleotide adjuvant |
| 指導教授: |
陳世輝
Chen, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 單純疱疹病毒VP22蛋白 、CpG核苷佐劑 、病毒中和抗體 、DNA疫苗 、牛流行熱病毒 |
| 外文關鍵詞: | bovine ephemeral fever virus, DNA vaccine, HSV-1 VP22, CpG ODN adjuvant, virus-neutralizing antibody |
| 相關次數: | 點閱:127 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牛流行熱病毒(bovine ephemeral fever virus, BEFV)為子彈型病毒科(Rhabdoviridae)一員,經由庫蠓等節肢動物為媒介,會感染牛隻造成急性發熱,精神抑鬱、食慾不振、呼吸症狀、流產、產乳量下降等症狀。其外套膜G醣蛋白(envelope glycoprotein G)具中和性抗原決定部位,可以刺激牛隻產生保護性免疫反應,但目前疫苗效力仍不佳。VP22為第一型單純疱疹病毒的內殼蛋白,具有特殊的細胞間散佈能力,可由被感染或轉染的原發細胞進入周邊未感染或轉染的細胞,已被利用為蛋白質傳輸的運載工具。
先前,本實驗室沈雅玲學姊已成功利用BEFV-G重組載體合併使用小鼠細胞素IL-2和GM-CSF的DNA載體為混合DNA疫苗,但所產生的免疫效果不夠顯著。本研究擬改進之,另行構築一結合牛流行熱病毒醣蛋白G基因和單純疱疹病毒VP22基因的重組融合載體(pBEFV-G/VP22)為DNA疫苗,使其在細胞內形成融合蛋白,並藉由VP22的細胞間運輸能力,將標的G抗原散佈到周邊鄰近細胞,以增加抗原呈現機率,提高免疫反應。動物實驗方面,我們以BALB/c小鼠為模式,肌肉注射pBEFV-G/VP22、pBEFV-G、pVP22、或不活化的BEFV,每十天一劑共三次,並於每次接種完的48小時後施打CpG核苷佐劑(ODN1628、ODN1628 control)。結果顯示,三次接種完成21天後(即第一次免疫接種後第42天),控制組及免疫接種pBEFV-G、pBEFV-G/VP22或不活化BEFV的組別,在搭配注射ODN1628後,血清與病毒結合之抗體效價分別為≦1:2、1:32、1:64、1:128;病毒中和抗體效價亦同。顯示VP22確實可以提升二倍抗體免疫反應。未添加ODN1628(即使用ODN1628 control或以PBS取代ODN1628)之實驗中,控制組及免疫接種pBEFV-G、pBEFV-G/VP22或不活化BEFV的組別,病毒中和抗體效價分別為≦1:2、1:8、1:16、1:64,皆比添加ODN1628低,顯示ODN1628佐劑可以提高二至四倍免疫反應。
Bovine ephemeral fever virus (BEFV), a member of the rhabdoviridae, is an arthropod-borne viral disease. It can cause a sudden onset of fever, depression, lameness, respiration symptoms, increase in abortions, and reduce milk production in cattle. The BEFV envelope G glycoprotein contains type-specific and neutralizing antigenic sites and can induce protective immunity in cattle. VP22 is a tegument protein of herpes simplex virus type 1. It has the specific capability of intercellular spread, where by the VP22 protein exits infected or transfected cells and enters neighboring cells. VP22 has been utilized as a vehicle for trafficking other proteins.
Previously, we had explored the use of pBEFV-G DNA vector combined with IL-2 and/or GM-CSF gene DNA vectors as adjuvants. The antibody responses were not satisfactory. This study was aimed to construct a new plasmid pBEFV-G/VP22, i.e., G gene fused to VP22, as vaccine exploiting the intercellular trafficking capacity of VP22 to help disseminating G protein to neighboring cells and enhancing immune response. The BALB/c mice were passively immunized by intramuscular inoculation with pBEFV-G/VP22, pBEFV-G, pVP22, or inactivated BEFV, CpG ODN adjuvant (ODN1628 and ODN1628 control) was administered 48h later. Three immunizations were performed with 10-days interval. After 21 days of the last immunization, mice sera were collected and antibody titers were determined. The virus-binding antibody titers for mice groups of control, pBEFV-G, pBEFV-G/VP22, or inactivated BEFV immunized in combination with ODN1628 adjuvant were 1:2, 1:32, 1:64, and 1:128, respectively. The virus-neutralizing antibody titers were same as above. The VP22 can thus enhance antibody response by two-fold. The virus-neutralizing antibody titers for mice groups of control, pBEFV-G, pBEFV-G/VP22, or inactivated BEFV immunized without ODN1628 (i.e. with ODN1628 control or PBS control) were ≦1:2, 1:8, 1:16, 1:64, respectively. The ODN1628 adjuvant thus shows two- to four-fold increase of immune responses.
王俊秀及莊士德。(2002)。台灣獸醫發展史,行政院農業委員會動植物防疫檢局 pp.223-225。
呂榮修、李永林、黃士則、蔡向榮、廖迂剛、林地發、曾俊憲、宋華聰。(1992)。1989年發生在台灣的牛流行熱學研究,台灣畜牧獸醫學會會報,60:51-56。
沈雅玲。(2005)。牛流行熱病毒外套膜醣蛋白G基因DNA疫苗之研究,國立成功大學生命科學研究所碩士論文,pp.13-84。
林朝舜。(1973)。牛流行性感冒,家畜衛生,台灣省政府農林暨中國村復小聯合委員會編印,pp. 54-61。
傅宗經。(1999)。牛流行熱病毒蛋白的生化研究,國立中興大學獸醫微生物學研究所論文,pp. 2-16。
Aints, A., Dilber, M. S., and Smith, C. I. E. (1999). Intercellular spread of GFP-VP22. J. Gene Med., 1:275-279.
Aints, A., Guven, H., Gahrton, G., Smith, C. I. E., and Dilber, M. S. (2001). Mapping of herpes simplex virus-1 VP22 functional domain for inter- and subcellular protein targeting. Gene Ther., 8:1051-1056.
Ballas, Z. K., Rasmussen, W. L., and Krieg, A. M. (1996). Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J. Immunol., 157:1840-1845.
Barouch, D. H. (2006). Rational design of gene-based vaccines. J. Pathol., 208:283-289.
Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321: 209–213.
Boggs, R. T., McGraw K., Codon, T., Flournoy, S., Villiet, P., Bennett, C. F., and Monia, B. P. (1997). Characterization and modulation of immune stimulation by modified oligonucleotide. Antisense Nucleic Acid Drug Dev., 7:461-471.
Cantlon, J. D., Gordy, P. W. and Bowen, R. A. (2000). Immune responses in
mice, cattle, horses to a DNA vaccine for cesicular stomatitis. Vaccine,
18:2368-2374.
Cheng, C. H., Lee, Y. F., Hsieh, Y. C., Yin, C. C., Huang, C. Y., and Chen, S. H. (2003). Study of bovine ephemeral fever virus nonstructural glycoprotein GNS in Taiwan. The 37th Annual Meeting of the Chinese Society of Microbiology, December 7, Taichung, Taiwan.
Chiu, S. Y. and Lu, Y. S. (1987). The epidemiology of bovine ephemeral fever in Taiwan in 1984. Journal of the Chinese Society of Veterinary Scencei, 13:1-9.
Cybinski, D. H., Davis, S. S. and Zakrzewski, H. (1992). Antigenic variation of the bovine ephemeral fever virus glycoprotein. Arch. Virol., 124:211-224.
Cybinski, D. H., Walker, P. J., Byrne, K.,A. and Zakrzewski H. (1990). Mapping of antigenic sites on the bovine ephemeral fever virus glycoprotein using monoclonal antibodies. J. Gen. Virol., 71:2065-72.
Davis, H. L., and McCluskie, M. J. (1999). DNA vaccines for viral diseases Microbes Infect., 1:7-21.
Elliott, G., and Meredith, D. (1992). The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49.J. Gen. Virol., 73:723-726.
Elliott, G., Mouzakitis, G., and O’Hare, P. (1995). VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. J. Virol., 69:7932-7941.
Elliott, G. and O’Hare, P. (1997). Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88:223-233.
Elliott, G. and O’Hare, P. (2000). Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division. J. Virol., 74:2131-2141.
Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W., and Luhrmanm, R. (1995). The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell, 82:375-483.
Hartmann, G. and Krieg, A. M. (2000).Mechanism and function of newly identified CpG DNA motif in human primary B cells. J. Immunol., 164:944-953.
Hartmann, G., Weeratna, R. G., Ballas, Z. K., Payette, P., Blackwell, S., Suparto, I., Rasmussen, W. L., Waldschmidt, M., Sajuthi, D., Purcell, R. H., Davis, H. L., and Krieg. A. M. (2000). Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo J. Immunol., 164:1617-1624.
Hertig, C., Pye, A. D., Hyatt, A. D., Davis, S. S., Mc William, S. M., Heine, H. G., Walker, P. J., and Boyle, D. B. (1995). Vaccinia virus-expressed bovine ephemeral fever virus G but not GNS glycoprotein induces neutralizing antibodies and protects against experimental infection. J. Gen. Virol., 77:631-640.
Holmes, I. H. and Doherty, R. L. (1970). Morphology and development of bovine ephemeral fever virus. J. Virol., 5:91-96.
Hsieh, Y. C., Chen, S. H., Chou, C. C., Ting, L. J., Itakura, C., and Wang, F. I. (2005). Bovine ephemeral fever in Taiwan (2001–2002). J. Vet. Med. Sci., 67: 411–416.
Hsieh, Y. C., Lee, Y. F., Chen, C. W., and Chen, S. H. (2002). Study of glycoprotein gene variation of bovine ephemeral fever virus isolated in southern Taiwan. The 36th Annual Meeting of the Chinese Society of Microbiology, December 15, Taipei, Taiwan.
Inaba, Y., Kurogi, H., Sato, K., Goto, Y., Omori, T., and Matumoto, M. (1973). Formalin-inactivated, aluminum phosphate gel-adsorbed vaccine of bovine ephemeral fever virus. Archiv fur die Gesamte Virusforschung, 42:42-53.
Inaba, Y., Kurogi, H., Takahashi, A., Sato, K., and Matumoto, M. (1974). Vaccination of cattle against bovine ephemeral fever with live attenuated virus followed by killed virus. Archiv fur die Gesamte Virusforschung, 44:121-132.
Ioannou, X. P., Griebel, P., Hecker, R., Babiuk, L. A., and van Drunen Littel-van den Hurk, S. (2002). The Immunogenicity and Protective Efficacy of Bovine Herpesvirus 1 Glycoprotein D plus Emulsigen Are Increased by Formulation with CpG Oligodeoxynucleotides. J. Virol., 76:9002-9010.
Klinman, D. M. (2004). Immunotherapeutic uses of CpG oligodeoxy- nucleotides. Nat. Rev. Immunol., 4:1-10.
Kongsuwan, K., Cybinski, D. H., Cooper, J., and Walker, P. J. (1998). Location of neutralizing epitopes on the G protein of bovine ephemeral fever rhabdovirus. J. Gen. Virol., 79:2573-2581.
Krieg, A. M. (1996). An innate immune defense mechanism based on the recognition of CpG motifs in microbial DNA. J. Lab. Clin. Med., 128:128-133.
Krieg, A. M. (2000). Immune effects and mechanismif action of CpG motifs. Vaccine, 19:618-622.
Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., Kpretzky, G. A., and Llinman, D. M. (1995)CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 374: 546-549.
Mackerras, I. M., Mackrras, J., and Burnet, F. M. (1940). Experimental studies of ephemeral fever in Australian cattle. Council for Scientific and Industrial Research Melbourne Bulletin, No.136.
Mc William, S. M., Kongsuwan, K., Cowley, J. A., Byrne, K. A., and Walker, P. J. (1997). Genome organization and transcription strategy in the complex GNS-L intergenic region of bovine ephemeral fever rhabdovirus. J. Gen. Virol., 78:1309-1317.
Montgomery, D. L., Shiver, J. W., Leander, K. R., Perry, H. C., Friedman, A., Martinez, D., Ulmer, J. B., Donnelly, J. J., and Liu, M. A. (1993). Heterologous and homologous protection against influenza A by DNA vaccination: optimization of DNA vectors DNA Cell Biol., 12:777-83.
Nandi, S., and Negi, B. S. (1999). Bovine ephemeral fever: a review. Comp. Immunol. Microbiol. Infect. Dis., 22:81-91.
Phelan, A., Elliott, G., and O’Hare, F. (1998). Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat. Biotechnol., 16:440-443.
Qin, L., Ding, T., Pahud, D. R., Chang, E., Imperial, M. J., and Brombrtg, J. S. (1997). Promoter attenuation in gene therapy: IFN-γ and TNF-α inhibit transgene expression. Hum. Gene Ther., 8:2019-2029.
Rankin, R., Pontarollo, R., Ioannou, X., Krieg, A. M., Hecker, R., Babiuk, L. A., and van Drunen Little-van den Hurk, S. (2001). CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev., 11:333-340.
Sparwasser, T., Koch, E. S., Vabulas, R. M., Heeg, K., Lipford, G. B., Ellwart, J. W., and Wanger, H. (1998) Bacterial DNA and immunostimulatory cpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur. J. Immunol., 28:2045-2054.
Sparwasser, T., Vabulas, R. M., villmov, B., Lipford, G. B., and Wanger, H. (2000). Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur. J. Immunol., 30:3591-3597.
St George ,T. D., Standfast, H. A., Christie, D. G., Knott, S. G., and Morgan, I. R. (1977). The epizootiology of bovine ephemeral fever in Australia and Papua New Guinea. Aust. Vet. J., 53: 17-28.
Tan, Y., Li, S., Pitt, B. R., and Huang, L. (1999). The inhibitory role of CpG immunositmulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum. Gene Ther., 10:2153-2161.
Tengvall, S., Josefsson, A., Holmgren, J., and Harandi, A. M. (2005). CpG oligodeoxynucleotide augments HSV-2 glycoprotein D DNA vaccine efficacy to generate T helper 1 response and subsequent protection against primary genital herpes infection in mice. J. Reprod. Immunol., 68:53-69.
Theodoridis, A., Boshoff, S. E. T., and Botha, M. J. (1973). Syudies on the development of a vaccine against bovine ephemeral fever. Onderstepoort J. Vet. Res., 40:77-82.
Theodoridis, A., Nevill, E. M., Els, H. J., and Boshoff, S. T. (1979). Viruses isolated from Culicoides midges in South Africa during unsuccessful attempts to isolate bovine ephemeral fever virus. Onderstepoort J. Vet. Res., 46:191-198.
Tighe, H., Takabayashi, K., Schwarta, D., Marsden, R., Beck, L.,corbeil, J., Richman, D. D.,Eiden, J. J. Jr., Spiegelberg, H. L., and Raz, E. (2000). Conjugation of protein to immunostimulatory DNA results in a rapid, long- lasting and potent induction of cell-mediated and humoral immunity. Eur. J. Immunol., 30:1939-1947.
Tokunaga, T., Yamamoto, H., Shimada, S., Abe, H., Fukuda, T., Fujisawa, Y., Furutani, Y., Yano, O., Kataoka, T., Sudo, T., Makiguchi, N., and Suganuma, T. (1984). Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J. Natl. Cancer Inst., 72: 955-962.
Toussaint, J. F., Letellier, C., Paquet, D., Dispas, M., and Kerkhofs, P. (2005). Prime-boost strategies combining DNA and inactivated vaccines confer high immunity and protection in cattle against bovine herpesvirus-1. Vaccine. 23:5073-81.
Uren, M. F., Walker, P. J., Zakrzewski, H., St George, T. D., and Byrne, K.A. (1994). Effective vaccination of cattle using the virion G protein of bovine ephemeral fever virus as an antigen. Vaccine, 12:845-850.
van Drunen Littel-van den Hurk, S. (2006). Rationale and perspectives on the success of vaccination against bovine herpesvirus-1. Vet. Microbiol., 113:275-282.
Wang, Y., Mc William, S. M., Cowley, J. A., and Walker, P. J. (1994). Complex genome organization in the GNS-L intergenic region of Adelaide River rhabdoviruses. Virology, 203:63-72.
Walker, P. J., Byrne, K. A., Cybinski, D. H., Doolan, D. L., and Wang, Y. H. (1991). Proteins of bovine ephemeral fever virus. J. Gen. Virol., 72:67-74.
Walker P. J., Byrne K. A., Riding G. A., Cowley J. A., Wang Y., and Mc William S. (1992). The genome of bovine ephemeral fever rhabdovirus contains two related glycoprotein genes. Virololy, 191:49-61.
Walker, P. J. and Konsuwan, K. (1999). Deduced structural model for animal
rhabdovirus glycoprotein. J. Gen. Virol., 80:1211-1220.
Walker, P. J., Wang, Y., Cowley, J. A., Mc William, S. M., and Prehaud, C. J. (1994). Structural and antigenic analysis of the nucleoprotein of bovine ephemeral fever rhabdovirus. J. Gen. Virol., 75:1889-1899.
Weiner, G. J., Liu, H. M., Wooldridge, J. E., Dahle, C. E., and Krieg, A. M. (1997). Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc. Natl. Acad. Sci.,94:10833-10837.
Wen, W., Meinkoth, J. L., Tsien, R. Y., and Taylor, S. S. (1995).
Identification of a signal for rapid export of proteins form the nucleus. Cell, 82:463-473.
Wybramietz, W., Prinz, F., Spiegel, M., Schenk, A., Bitzer, M., Gregor, M., and Lauer, U. (1999). Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines. J. Gene Med. 1:265-274.
Yamamoto, S., Yamamoto,T., Kataoka, T., Kuramoto, E., Yano, O., and Tokunaga, T. (1992). Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J. Immunol., 148:4072-4076.
Zhao, Q., Temsamani, J., Iadarola, P. L., Jiang, Z., and Agrawal, S. (1996). Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochem. Pharmacol., 51:173-182.
Zheng, C., Babiuk, L. A., van Drunen Littel-van den Hurk, S. (2005). Bovine Herpesvirus 1 VP22 Enhances the efficacy of a DNA vaccine in cattle. J. Virol., 79:1948-1953.
Zheng, C., Brownlie, R., Babiuk, L. A., and van Drunen Littel-van den Hurk, S. (2005). Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22. J. Virol. 79:11864-11872.