簡易檢索 / 詳目顯示

研究生: 王心志
Wang, Xin-Zhi
論文名稱: 離子置換方法製備混合鹵素鈣鈦礦發光二極體元件
The Ion Exchanged Process in Fabricating with Mixed Halide Perovskite Light-Emitting Diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 有機鈣鈦礦發光二極體混鹵素離子置換離子遷移
外文關鍵詞: perovskite light-emitting diodes, ionic additives, ion migration
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去研究中,我們實驗室成功地提升了鈣鈦礦發光二極體的效率以及亮度,但此僅只侷限於 CH3NH3PbBr3綠光波段,相較於傳統有機發光二極體,在紅光和藍光的部分 仍有很大的進步空間,且由於鈣鈦礦本身嚴重的離子遷移現象,更使得綠光以外的元件發展不易。
    本實驗研究在以離子置換的方式製作混鹵素鈣鈦礦發光二極體,嘗試以此方式製作不同光譜的發光二極體,並觀察離子置換後薄膜的變化並利用量測分析確認離子是否成功進行置換 ,做成元件後再與傳統混鹵素元件做比較。最後再摻雜離子添加劑氯化膽鹼 (Choline Chloride),嘗試改善薄膜缺陷和提升元件亮度和發光效率 ,並觀察離子遷移現象是否被抑制 。

    In the past research, our laboratory successfully improved the efficiency and brightness of the perovskite light-emitting diodes (LEDs), but this is only limited to the CH3NH3PbBr3 in green light wavelength. Compared to the traditional organic light-emitting diodes, there is still a lot of room for improvement in red and blue light wavelength, and due to the serious ion migration phenomenon of perovskite itself, the development of red and blue light device is not easy.
    In this experiment, the mixed halide perovskite light-emitting diode was fabricated by ion exchanged process. In this way, light-emitting diodes with different spectra were fabricated, and changes in the film after ion exchange were observed. Finally, the ion additive choline chloride was doped to try to improve the film defects and enhance the brightness and luminous efficiency of the device, and to observe whether the ion migration phenomenon was suppressed.

    摘要 ………………………………………………………………………...I Extended Abstract II 致謝 ……………………………………………………………………….X 目錄 ………………………………………………………………….…..XII 圖目錄 ……………………………………………………………………..XV 第一章 緒論 1 1-1 前言 1 1-2 有機電激發光元件之發展 3 1-3 研究動機與大綱 8 1-3-1 研究動機 8 1-3-2 論文大綱 9 第二章 鈣鈦礦發光二極體發展 10 2-1 前言 10 2-2 有機電激發光元件的結構以及操作原理 13 2-3 鈣鈦礦發光二極體重要的文獻回顧 16 2-4 混鹵素鈣鈦礦元件的發展與困境 22 2-5 鈣鈦礦離子置換的發展 25 2-6 摻雜兩性離子抑制離子遷移並穩定元件 28 2-7 本章結論 33 第三章 元件製作與實驗步驟 34 3-1 前言 34 3-2 鈣鈦礦發光二極體的製備過程 36 3-2-1 ITO基板黃光顯影蝕刻 36 3-2-2 ITO基板清洗 39 3-2-3 電洞傳輸層製作 39 3-2-4 主動層製作 40 3-2-5 電子傳輸層及緩衝層製作 41 3-2-6 陰極製作 42 3-3 元件光電特性量測 43 3-3-1 電流-亮度-電壓量測系統 43 3-3-2 掃描式電子顯微鏡 43 3-3-3 光致發光光譜儀 44 3-3-4 紫外-可見光(UV-Vis)吸收光譜儀 45 3-3-5 X光繞射儀 45 3-3-6 外部量子效率(EQE)量測系統 46 3-4 本章結論 47 第四章 改善鈣鈦礦發光二極體之研究 48 4-1 前言 48 4-2 離子置換對薄膜的影響與分析 50 4-2-1 離子置換之薄膜分析-反溶劑之滴入時間影響 51 4-2-2 離子置換之薄膜分析-反溶劑濃度之影響 54 4-2-3 離子置換薄膜之結晶程度分析 56 4-2-4 驗證Cl離子置換了薄膜中部分Br 58 4-3 離子置換對鈣鈦礦發光二極體的影響 59 4-3-1 離子置換元件之電性量測 59 4-3-2 離子置換元件與一般混鹵素元件比較 62 4-4 摻雜氯化膽鹼於離子置換元件中的影響 66 4-4-1 摻雜氯化膽鹼於離子置換元件的電性量測 66 4-4-2 摻雜氯化膽鹼於離子置換元件的之薄膜分析 68 4-5 本章結論 73 第五章 總結與未來工作 74 5-1 總結 74 5-2 未來工作展望 75 參考文獻 76

    [1] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
    [2] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron. 4, 45 (2003).
    [3] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
    [4] C. W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
    [5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
    [6] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREL, accessed 27 June 2019).
    [7] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438 (2013).
    [8] Q.Chen, N. De Marco, Y. (Michael) Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, “Under the spotlight:The organic-inorganic hybrid halide perovskite for optoelectronic applications”, Nano Today 10, 355 (2015).
    [9] Y.-H. Kim, H. Cho, T.-W. Lee, “Metal halide perovskite light emitters”, PNAS 113, 11694 (2016).
    [10] S. A.Veldhuis, P. P. Biox, N. Yantara, M. Li, T. C. Sum, N. Mathews, S. G. Mhaisalkar, “Perovskite Materials for Light-Emitting Diodes and Lasers”, Adv. Mater. 28, 6804 (2016).
    [11] J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)”, Adv. Mater. 27, 7162 (2015).
    [12] J. Huang, Y. Yuan, Y. Shao, Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications”, Nature Reviews Materials 2, 17042 (2017).
    [13] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc., Hoboken, NJ, USA, 535-566 (2015).
    [14] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615 (2014).
    [15] M. Era, S. Morimoto, T. Tsutsui, S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Appl. Phys. Lett. 65, 676 (1994).
    [16] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. Seok, “Iodide mamagement in formamidinium-lead-halide-based perovskite layers for efficient solar cells”, Science 356, 1376 (2017).
    [17] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, “Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination”,Nat. Photonics 9,679 (2015).
    [18] Y. Yuan, J. Huang, “Ultrahigh gain, low niose, ultraviolet photodetectors with highly aligned organic crystals”,Adv. Opt. Mater. 4, 264 (2016).
    [19] E.-P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang, “High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites”, Adv. Mater. 29, 1606895 (2017).
    [20] K. Chondroudis, D. B. Mitzi, “Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chem. Mat. 11, 3028 (1999).
    [21] Z. -K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol. 9, 687 (2014).
    [22] Y. -H. Kim, H. Cho, J. H. Heo, T. -S. Kim, N. Myoung, C. -L. Lee, S. H. Im, T. -W.
    Lee, “Multicolored organic/inorganic hybrid perovskite light-emitting diodes”, Adv. Mater. 27, 1248 (2015).
    [23] R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M. -L. Lai, Z. -K. Tan, N. C.
    Greenham, J. L. MacManus-Driscoll, R. H. Friend, D. Credgington, “Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors”, Adv. Mater. 27, 1414 (2015).
    [24] J. Wang, N. Wang, Y. Jin, J. Si, Z. -K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, “Interfacial control toward efficient and low-voltage perovskite light-emitting diodes”, Adv. Mater. 27, 2311 (2015).
    [25] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z. -K. Tan, M. L. Lai, J. L. MacManus-Driscoll, N. C. Greenham, R. H. Friend, “Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix”, J. Phys. Chem. Lett. 6, 446 (2015).
    [26] A. Sadhanala, A. Kumar, S. Pathak, A. Rao, U. Steiner, N. C. Greenham, H. J. Snaith, R. H. Friend, “Electroluminescence from organometallic lead halide perovskite-conjugated polymer diodes”, Adv. Electron. Mater. 1, 1500008 (2015).
    [27] G. Li, Z. -K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. -W. Lim, R. H. Friend, N. C. Greenham, “Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix”, Nano Lett. 15, 2640 (2015).
    [28] O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, I. Mora-Sero, “Bright visible-infrared light emitting diodes based on hybrid halide perovskite with spiro-OMeTAD as a hole-injecting layer”, J. Phys. Chem. Lett. 6, 1883 (2015).
    [29] A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Gödel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. De Volder, R. H. Friend, “Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications”, Nano Lett. 15, 6095 (2015).
    [30] H. Cho, S. -H. Jeong, M. -H. Park, Y. -H. Kim, C. Wolf, C. -L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. -W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
    [31] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
    [32] M. I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A. A. Zhumekenov, R. Begum, J. Pan, N. Cho, O. F. Mohammed, O. M. Bakr, “Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids”, ACS Energy Lett. 1, 840 (2016).
    [33] N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R. H. Friend, J. Wang, W. Huang, “Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells”, Nat. Photonics 10, 699 (2016).
    [34] L. Meng, E. -P. Yao, Z. Hong, H. Chen, P. Sun, Z. Yang, G. Li, Y. Yang, “Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage”, Adv. Mater. 29, 1603826 (2017).
    [35] Z. Chen, C. Zhang, X. -F. Jiang, M. Liu, R. Xia, T. Shi, D. Chen, Q. Xue, Y. -J. Zhao, S. Su, H. -L. Yip, Y. Cao, “High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film”, Adv. Mater. 29, 1603157 (2017).
    [36] H. -K. Seo, H. Kim, J. Lee, M. -H. Park, S. -H. Jeong, Y. -H. Kim, S. -J. Kwon, T. -H. Han, S. Yoo, T. -W. Lee, “Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode”, Adv. Mater. 29, 1605587 (2017).
    [37] X. Zhang, H. Liu, W. Wang, J. Zhang, B. Xu, K. L. Karen, Y. Zheng, S. Liu, S. Chen, K. Wang, X. W. Sun, “Hybrid perovskite light-emitting diodes based on perovskite nanocrystals with organic–inorganic mixed cations”, Adv. Mater. 29, 1606405 (2017).
    [38] J. -W. Lee, Y. J. Choi, J. -M. Yang, S. Ham, S. K. Jeon, J. Y. Lee, Y. -H. Song, E. K. Ji, D. -H. Yoon, S. Seo, H. Shin, G. S. Han, H. S. Jung, D. Kim, N. -G. Park, “In-situ formed type I nanocrystalline perovskite film for highly efficient light-emitting diode”, ACS Nano 11, 3311 (2017).
    [39] L. Zhao, Y. -W. Yeh, N. L. Tran, F. Wu, Z. Xiao, R. A. Kerner, Y. L. Lin, G. D. Scholes, N. Yao, B. P. Rand, “In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices”, ACS Nano 11, 3957 (2017).
    [40] E. -P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang, Y. Yang, “High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites”, Adv. Mater. 29, 1606859 (2017).
    [41] S. J. Yoon, S. Draguta, J. S. Manser, O. Sharia, W. F. Schneider, M. Kuno, P. V. Kamat, “Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation”, ACS Energy Lett. 1, 290 (2016).
    [42] S. Draguta, O. Sharia, S. J. Yoon, M. C. Brennan, Y. V. Morozov, J. S. Manser, P. V. Kamat, W. F. Schneider, M. Kuno, “Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites”, Nat. Commun. 8, 200 (2017).
    [43] G. Li, J. Y.-L. Ho, M. Wong, H. S. Kwok, “Reversible Anion Exchange Reaction in Solid Halide Perovskites and Its Implication in Photovoltaics”, J. Phys. Chem. C. 119, 26883 (2015).
    [44] L. Xiao, J. Xu, J. Luan, B. Zhang, Z. Tan, J. Yao, S. Dai, “Achieving mixed halide perovskite via halogen exchange during vapor-assisted solution process for efficient and stable perovskite solar cells”, Org. Electron. 50, 33 (2017).
    [45] T. Zhao, H. Liu, M. E. Ziffer, A. Rajagopal, L. Zuo, D. S. Ginger, X. Li, A. K. Y. Jen, “Realization of a Highly Oriented MAPbBr3 Perovskite Thin Film via Ion Exchange for Ultrahigh Color Purity Green Light Emission”, ACS Energy Lett. 3, 1662 (2018).
    [46] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Prog. Photovoltaics 8, 473 (2000).
    [47] Y. Liu, T. Lai, H. Li, Y. Wang, Z. Mei, H. Liang, Z. Li, F. Zhang, W. Wang, A. Y. Kuznetsov, X. Du, “Nanostructure formation and passivation of large-area black silicon for solar cell applications”, Small 8, 1392 (2012).
    [48] B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C. -S. Jiang, “Innovative dual function nc-SiOx : H layer leading to a >16% efficient multi-junction thin-film silicon solar cell”, Appl. Phys. Lett. 99, 113512 (2011).
    [49] C. Zuo, L. Ding, “An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive”, Nanoscale 6, 9935 (2014).
    [50] K. M. Boopathi, R. Mohan, T. -Y. Huang, W. Budiawan, M. -Y. Lin, C. -H. Lee, K. -C. Ho, C. -W. Chu, “Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives”, J. Mater. Chem. A 4, 1591 (2016).
    [51] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T. -W. Koh, G. D. Scholes, B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites”, Nat. Photonics 11, 108 (2017).
    [52] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations”, Nat. Energy 2, 17102 (2017).

    無法下載圖示 校內:2024-07-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE