| 研究生: |
黃珏綺 Huang, Chueh-Chi |
|---|---|
| 論文名稱: |
台灣地區河川環境水體、底泥及魚體中壬基酚和雙酚A流布及Fugacity model模擬應用 The Occurrence of Nonylphenol and Bisphenol A in Water, Sediment and Fishes from Principal Rivers and Application of Fugacity model in Taiwan. |
| 指導教授: |
李俊璋
Lee, Ching-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 145 |
| 中文關鍵詞: | 壬基酚 、雙酚A 、河川環境 、水體 、底泥 、魚體 、Fugacity model |
| 外文關鍵詞: | Nonylphenol, Bisphenol A, River environment, Water, Sedment, Fish, Fugacity Model |
| 相關次數: | 點閱:146 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壬基酚與雙酚A廣泛用於工業製程與民生製品中,於製造、使用過程可能會透過工業及生活廢水排放而進入環境中,過去環境流布相關研究已證實壬基酚與雙酚A廣泛存在於環境介質與生物體中。由於壬基酚與雙酚A皆屬內分泌干擾物,可干擾生物體內分泌系統正常的運作,因此對其在環境中之流布調查研究須特別加以重視。此外,毒性化學物質(以下簡稱毒化物)之環境流布調查為管理上之重要工作,環境流布資料可用於暴露風險評估,進而作為毒性化學物質管制、暴露風險評估、減量策略及技術之參考。
由於毒化物之環境流布調查需耗費大量人力、物力及時間,為有效運用有限之人力、物力及經費,運用多介質傳輸模式進行初步模擬,以篩選出重要之毒化物或發生蓄積之主要環境介質,已為重要之環境流布研究課題。在各種多介質傳輸模式中,以fugacity model較為廣泛運用毒化物之流布模擬。因此本研究使用fugacity model進行壬基酚與雙酚A之環境流布模擬,並與實測值比對,以探討模擬所需參數之完備性與準確性。本研究之主要的目的為(一)調查臺灣地區主要河川中水體、底泥與魚體中壬基酚及雙酚A流布情形,(二) 收集、討論環境流布模擬所需參數資料,運用fugacity model模擬臺灣地區河川中各環境介質壬基酚及雙酚A之濃度並與實測值比對,(三)以環境介質中壬基酚及雙酚A實測濃度推估土壤吸附係數(log Koc)、生物-底泥累積係數(Biota-sediment accumulative factor, BSAF)與生物濃縮因子(Bioconcentration factor, BCF),並探討各係數與壬基酚及雙酚A於介質中累積之相關性。
本研究完成2012年台灣10條河川水體、底泥及魚體樣本採樣及分析,並收集2009-2011年台灣21條河川枯水期與豐水期之水體、底泥及魚體樣本資料,作為比對資料。結果顯示所有水體、底泥及魚體樣本皆可檢測出壬基酚、雙酚A濃度,水體中平均濃度分別為1.02(0.01-10.02)μg/L、0.94(0.01-33.36)μg/L,底泥中平均濃度為1663.47(1.98-19624.13)μg/kg dw、26.97(0.07-471.33)μg/kg dw,而魚體中平均濃度分別為358.79(11.79-3213.86)μg/kg dw、10.58(0.22-145.62)μg/kg dw。透過上述環境流布資料調查,實際了解壬基酚與雙酚A於台灣河川各環境介質中分布情形,並作為模擬結果比對之數據。本研究進一步收集fugacity model模擬所需之相關參數,包含壬基酚與雙酚A之物理化學特性、模擬流域之環境參數及壬基酚、雙酚A之排放量,以輸入fugacity model進行模擬。壬基酚依照釋放量比例與運作量之推估差異及合理性,共分四種排放情境進行模擬,水體模擬濃度平均值分別為7.015、1.874、0.200與6.257μg/L,底泥模擬濃度平均值分別為1789.007、545.684、62.274與1400.899μg/kg dw;而雙酚A則共分十種排放情境進行模擬,水體模擬濃度平均值分別為0.276、0.003、0.179、0.002、0.372、0.004、0.370、0.134、0.047與0.236μg/L,底泥模擬濃度平均值分別為4.544、0.039、1.996、0.019、4.152、0.040、7.226、3.215、1.032與3.476μg/kg dw。將壬基酚、雙酚A之實測值與模擬值進行比對,在合理排放情境下,考量各目的用途運用分布、釋放比例與污水處理效能,模擬結果顯示,壬基酚水體與底泥實測濃度與模擬值之比值分別為290與28,雙酚A水體與底泥實測值與模擬值之比值分別為1.14與2.68;然而在資料不足下,僅考慮流域人口比例的排放情境下,發現所模擬的結果與壬基酚、雙酚A之水體及底泥實測值反而較為接近,壬基酚實測值與模擬值之比值分別為6與0.6,雙酚A水體及底泥實測濃度與模擬值之比值分別為0.88與0.84,說明了相較於合理排放情境之模擬結果,僅考慮流域人口比例的排放情境模擬值與實測值較相近,顯示各流域壬基酚與雙酚A排放量計算為主要影響之原因,代表台灣壬基酚與雙酚A排放量資料之完備性及準確性需加以改善。
環境流布調查資料除了用以比對模擬結果外,亦可運用實測濃度計算log Koc、BSAF及BCF,計算結果顯示壬基酚與雙酚A log Koc平均值分別為4.62與3.36,BSAF平均值(範圍)分別為12.55(0.003-245.598)與9.63(0.003-188.889),BCF平均值(範圍)分別為2994.94(3.18-25991.89)與118.35(1.04-1182.92),進一步以spearman相關性分析探討彼此間之相關性,分析結果顯示log Koc與底泥中壬基酚與雙酚A濃度呈顯著正相關,BSAF則依魚種棲息特性(底棲與浮游魚類)而有不同,其中壬基酚與雙酚A在浮游魚類中之BSAF皆與log Koc呈顯著負相關,推測可能原因係浮游魚類相較於底棲型魚類不易攝取沉積於底泥中的食物,因此體內累積情形較底棲魚類低。
Nonylphenol (NP) and Bisphenol A (BPA) are widely used in industrial and household applications. These chemicals may discharge into the environment with industrial and domestic wastewater. Numerous studies have found that NP and BPA widely existed in the environment and biota. Due to NP and BPA are endocrine disruptors able to disrupt reproductive system, it is important to investigate the occurrence of NP and BPA in the environment. The occurrence of toxic substance in the environment can be used to assess exposure risk. Furthermore, it will be as a reference for the management, exposure risk assessment and reduction strategies development of toxic substance. Monitoring of occurrence of toxic substances need lots of manpower and budget, and is difficult to perform due to both temporal and spatial sampling restricts. How to select media which toxic substances will be accumulated to implement the environmental monitoring is the major topic to concern. The fugacity model is one of the multimedia dispersion models and widely used to provide an efficient way to predict the occurrence of contaminants in the environment, and was used as multimedia dispersion models in present study. The objectives of this study are:(1) to investigate the concentrations of nonylphenol and bisphenol A in water, sediment and fishes from principal rivers in Taiwan; (2) to collect and integrate the parameters which is needed for multimedia dispersion simulation and to discuss the integrity and precision,then using fugacity model to predict the concentrations of nonylphenol and bisphenol A in different environmental media of rivers in Taiwan; (3) to estimate organic carbon-water partition coefficient (log Koc), biota-sediment accumulation factor (BSAF) and bioconcentration factor (BCF) using the measured concentrations of nonylphenol and bisphenol A in environmental media.
In present study, water, sediment and fish samples in 10 major rivers were sampled in 2012, NP and BPA concentration of those media were measured. The measured NP and BPA concentrations of river water, sediment and fish from twenty one principal rivers in Taiwan during 2009-2011 were collected and integrated to compare with simulative data from fugacity model. The result showed that the mean (range) concentrations of NP in river water, sediment and fish were 1.02 (0.01-10.02) μg/L, 1663.47 (1.98-19624.13) μg/kg dw and 358.79 (11.79-3213.86) μg/kg dw, respectively. The mean (range) concentrations of BPA in river water, sediment and fish were 0.94 (0.01-33.36) μg/L, 26.97 (0.07-471.33) μg/kg dw and 10.58(0.22-145.62)μg/kg dw, respectively. The physical and chemical properties of NP and BPA, environmental parameters of sampling sites and emissions quantities of NP and BPA were collected to simulate the concentrations of NP and BPA in river water and sediment using fugacity model. The simulative concentrations of NP in water and sediment were performed according to four scenarios based on the rationality of release and operation pattern. The mean simulative levels are 7.015, 1.874, 0.200 and 6.257μg/L in water and 1789.007, 545.684, 62.274 and 1400.899μg/kg dw in sediment, respectively. The simulations of BPA concentration in water and sediment were performed according to ten scenarios based on the rationality of release and operation pattern.The mean of simulative levels are 0.276, 0.003, 0.179, 0.002, 0.372, 0.004, 0.370, 0.134, 0.047 and 0.236 μg/L in water and 4.544, 0.039, 1.996, 0.019, 4.152, 0.040, 7.226, 3.215, 1.032 and 3.476 μg/kg dw in sediment, respectively. Comparing the measured and simulative concentrations of NP and BPA, the ratio of measurement and simulation in water are 290 and 1.14, then in sediment are 28 and 2.68 for reasonable scenario which consider specific usage, release ratio and wastewater treatment efficacy. Relatively, the ratio of measured and simulative concentrations in water are 6 and 0.88, and 0.6 and 0.84 in sediment for the scenario only population density of watershed was considered. The results shows that the emission quantities of NP and BPA contributed the great impact to simulative levels, the integrity and precision of emission quantities of NP and BPA should be identified. Finally, the measured concentrations of NP and BPA in the media were used to calculate the log Koc, BSAF and BCF. The log Koc of NP and BPA are varied from 3.42-6.62 and 2.29-4.62, respectively. The BSAF of NP and BPA in different fishes are varied from 0.003-245.598 and 0.003-188.889, respectively. The BCF of NP and BPA in different fishes are varied from 3.18-25991.89 and 1.04-1182.92, respectively. Furthermore, we found log Koc are positively associated with the concentrations of NP and BPA in sediment according to the Spearman correlation analysis. On the other hand, the BSAF of NP and BPA in pelagic fish are negatively associated with log Koc. According to the result, feeding habits in fish may be the important parameter. Compared with pelagic fish, demersal fish live and feed near sediment, the accumulation of NP and BPA in demersal fish may be higher than pelagic fish.
Ahel M, Giger W, Koch M. 1994. Behavior of Alkylphenol polyethoxylate surfactants in the aquatic environment. 1. Occurrence and transformation in sewage-treatment. Water Res. 28, 1131–1142.
Ahel M, McEvoy J, Giger W. 1993. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ Pollut 79(3):243-8.
Anonymous. 2001. Nonylphenol. Chem Mark Rep 260:31.
Anonymous. 2004. Demand increase for nonylphenol in China. Focus Surfactants, 5, 3.
Arditsoglou A, Voutsa D. 2008. Determination of phenolic and steroid endocrine disrupting compounds in environmental matrices. Environ Sci Pollut Res Int. 15(3):228-36.
Baek JM, Park SJ. 2000. Tracking the distribution of organic compounds using fugacity model. Korean J Chem Eng 17:12-6.
Barber LB, Thurman EM, Schroeder MP, Leblanc DR.1988. Long-term fate of organic micropollutants in sewage-contaminated groundwater. Environ Sci Technol. 22(2):205-11.
Bechi N, Ietta F, Romagnoli R, Jantra S, Cencini M, Galassi G, Serchi T, Corsi I,Focardi S, Paulesu L. 2010. Environmental levels of para-nonylphenol are able to affect cytokine secretion in human placenta. Environ. Health Perspect. 118, 427–431.
Bechi N, Ietta F, Romagnoli R, Focardi S, Corsi I, Buffi C, Paulesu L.2006. Estrogen-like response to p-nonylphenol in human first trimester placenta and BeWo choriocarcinoma cells. Toxicol Sci. 93(1):75-81.
Beronius A, Rudén C, Håkansson H, Hanberg A. 2010. Risk to all or none? A comparative analysis of controversies in the health risk assessment of Bisphenol A. Reprod Toxicol. Apr;29(2):132-46.
Birkett, J.A., Lester, J.N., 2003. Endocrine Disruptors in Wastewater and Sludge Treatment Processes. Environ Health Perspect. 111(10): A550.
BISPHENOL A (BPA) - Current state of knowledge and future actions by WHO and FAO.2009.
Blackburn MA, Waldock MJ. 1995. Concentrations of alkylphenols in rivers and estuaries in England and Wales. Water Res 29:1623-29.
Blom A, Ekman E, Johannisson A, Norrgren L, Pesonen M.1998.Effects of xenoestrogenic environmental pollutants on the proliferation of a human breast cancer cell line (MCF-7). Arch Environ Contam Toxicol. 34(3):306-10.
Brix R, Postigo C, González S, Villagrasa M, Navarro A, Kuster M, de Alda MJ, Barceló D. 2010. Analysis and occurrence of alkylphenolic compounds and estrogens in a European river basin and an evaluation of their importance as priority pollutants. Anal Bioanal Chem 396(3):1301-9.
Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. 1995. Xenoestrogens released from lacquer coatings in food cans. Environ Health Persp 103: 608-612.
Canada. 2002. Environment Canada. Canadian Environmental Quality Guidelines for Nonylphenol and its Ethoxylates (Water, Sediment, and Soil) Scientific Supporting Document. Ecosystem Health: Science-based Solutions Report No. 1-3. National Guidelines and Standards Office, Environmental Quality Branch, Environment Canada.
Cao Q, Yu Q, Connell DW. 2010. Fate simulation and risk assessment of endocrine disrupting chemicals in a reservoir receiving recycled wastewater. Sci Total Environ 408(24):6243-50.
Céspedes R, Lacorte S, Ginebreda A, Barceló D. 2008. Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain). Environ Pollut. 2008 May;153(2):384-92.
Chen HW, Liang CH, Wu ZM, Chang EE, Lin TF, Chiang PC, Wang GS. 2013.Occurrence and assessment of treatment efficiency of nonylphenol, octylphenol and bisphenol-A in drinkingwater in Taiwan. Sci Total Environ. 449:20-8.
Chen TC,Yeh YL.2010. Ecological risk, mass loading, and occurrence of nonylphenol (NP), NP mono-, and diethoxylate in Kaoping River and its tributaries, Taiwan. Water Air Soil Poll. 208, 209–220.
Cheng CY, Wu CY, Wang CH, Ding WH. 2006. Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan. Chemosphere. 65(11):2275-81.
Chu S, Haffner GD, Letcher RJ. 2005. Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry.J Chromatogr A. 1097(1-2):25-32.
Colborn T, vom Saal FS, Soto AM., 1993. Developmental effects of endocrine disrupting compounds in wildlife and humans. Environ Health Perspect 101:378–384
Contreras WA, Ginestar D, Paraiba LC, Bru R. 2008. Modelling the pesticide concentration in a rice field by a level IV fugacity model coupled with a dispersion-advection equation. Comput Math Appl 56(3): 657-669.
Corvini PF, Schäffer A, Schlosser D. 2006. Microbial degradation of nonylphenol and other alkylphenols--our evolving view. Appl Microbiol Biotechnol.72(2):223-43.
Dachs J, Van Ry D.A., Eisenreich S.J. 1999. Occurrence of estrogenic nonylphenols in the urban and coastal atmosphere of the Lower Hudson river estuary. Environ Sci Technol 33:2676-79.
Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G. 2002. Global assessment of the state-of-the-science of endocrine disruptors. Available at: International Programme on Chemical Safety, World Health Organisation.
Dodds, E. C., Goldberg, L., Lawson, W. & Robinson, R. 1938. Estrogenic activity of certain synthetic compounds.Nature 141:247-248.
Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, Kim KW, Inam E, Kim SD. 2010. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. Chemosphere 78(3):286-93.
Edginton AN, Ritter L. 2009. Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feedingschedules, using a physiologically based toxicokinetic model. Environ Health Perspect. 117(4):645-52.
Ekelund R, Granmo A, Magnusson K, Berggren M, Bergman A. 1993.Biodegradation of 4-nonylphenol in seawater and sediment. Environ Pollut. 79(1):59-61.
Erler C, Novak J. 2010. Bisphenol a exposure: human risk and health policy. J Pediatr Nurs. 25(5):400-7.
EU. 2002. European Union Risk Assessment Report. 4-Nonylphenol (Branched) and Nonylphenol. 2nd Priority List Volume: 10.
Fairchild WL, Swansburg EO, Arsenault JT, Brown SB. 1999. Does an association between pesticide use and subsequentdeclines in catch of Atlantic salmon (Salmo salar) represent a caseof endocrine disruption? Environ Health Perspect .107(5):349-57.
Fent G, Hein WJ, Moendel MJ, Kubiak R., 2003.Fate of 14C-bisphenol A in soils. Chemosphere. 51(8):735-46.
Fernandez MP, Ikonomou MG, Buchanan I. 2007. An assessment of estrogenic organic contaminants in Canadian wastewaters. Sci Total Environ 373(1) :250- 69.
Fleisch AF, Sheffield PE, Chinn C, Edelstein BL, Landrigan PJ. 2010.Bisphenol A and related compounds in dental materials. Pediatrics. 126(4):760-8.
Fuerhacker M. 2003. Bisphenol A emission factors from industrial sources and eliminationrates in a sewage treatment plant.Water Sci. Technol.47 (10), 117–122.
Funakoshi G, Kasuya S. 2009. Influence of an estuary dam on the dynamics of bisphenol Aand alkylphenols. Chemosphere 75(4):491-7.
Furhacker M, Scharf S, Weber H. 2000. Bisphenol A: emissions from point sources. Chemosphere 41, 751–756.
George O, Bryant BK, Chinnasamy R, Corona C, Arterburn JB, Shuster CB. 2008. Bisphenol A directly targets tubulin to disrupt spindle organization in embryonic and somatic cells. ACS Chem Biol. 3(3):167-79.
Giger W, Brunner PH, Schaffner C.1984. 4-Nonylphenol in sewage-sludge: accumulation of toxic metabolites from nonionic surfactants. Science 1984;225:623–5.
Greiner, E., Kaelin, T., Nakamura, K., 2007. Bisphenol A. CEH Report by SRI Consulting.
HELCOM (Helsinki Commission). 2002. Guidance document on nonylphenol/nonylphenol ethoxylates (Np/NPEs).Baltic Marine Environment Protection Commission, Helsinki, Finland.
Höhne C, Püttmann W. 2008. Occurrence and temporal variations of the xenoestrogens bisphenol A, 4-tert-octylphenol, and tech. 4-nonylphenol in two German wastewater treatment plants. Environ Sci Pollut Res Int.15(15):405-16.
Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. 1999. Exposure to bisphenol A advances puberty. Nature, 401:763-764.
Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ. 2003. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr Biol 13: 546–553.
Isobe, T., Nishiyama, H., Nakashma, A., Takada, H., 2001. Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: their association with aquatic particles and sedimentary distributions. Environ. Sci. Technol. 35, 1041–1049.
JME (Japanese Ministry of Environment). 2001. Report on the test results of endocrine disrupting effects of nonylphenol on fish (draft). Tokyo: Environmental Health Department, Government of Japan.
Jobling S, Casey D, Gray TR, Oehlmann J, Oehlmann US, Pawlowski S, Baunbeck T, Turner AP, Tyler CR., 2004. Comparative responses of mollusks and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol 66:207–222
Jonkers N, Sousa A, Galante-Oliveira S, Barroso CM, Kohler HP, Giger W. 2010. Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environ Sci Pollut Res Int 17(4):834-43.
Krishnan AV, Starhis P, Permuth SF, Tokes L, Feldman D. 1993. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrin 132: 2279-2286.
Kuch HM, Ballschmiter K. 2001. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35(15):3201-6.
Lakind JS, Naiman DQ. 2011. Daily intake of bisphenol A and potential sources of exposure: 2005-2006 National Health and Nutrition Examination Survey. J Expo Sci Environ Epidemiol. 21(3):272-9.
Lalah JO, Schramm KW, Henkelmann B, Lenoir D, Behechti A, Günther K, Kettrup A. 2003. The dissipation, distribution and fate of a branched 14C-nonylphenol isomer in lake water/sediment systems. Environ Pollut. 122(2):195-203.
Langford KH, Lester JN. 2002. Fate and behaviour of endocrine disruptors in wastewater treatment processes. In: Brikett JW, Lester JN, editors. Endocrine disruptors in wastewater and sludge treatment processes. Boca Raton, USA:CRC Press Inc.
Lee CC, Jiang LY, Kuo YL, Hsieh CY, Chen CS, Tien CJ. 2013. The potential role of water quality parameters on occurrence of nonylphenol and bisphenol A andidentification of their discharge sources in the river ecosystems. Chemosphere. 91(7):904-11.
Lee PC, Lee W. 1996.In vivo estrogenic action of nonylphenol in immature female rats. Bull Environ Contam Toxicol. 57(3):341-8.
Lee HB, Peart TE. 2000. Determination of bisphenol A in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry. J. AOAC Int. 83(2):290-7.
Li D, Kim M, Oh JR, Park J. 2004. Distribution characteristics of nonylphenols in the artificial Lake Shihwa, and surrounding creeks in Korea. Chemosphere. 56(8):783-90.
Li XL, Luan TG, Liang Y, Wong MH, Lan CY. 2007. Distribution patterns of octylphenol and nonylphenol in the aquatic system at mai po marshes nature reserve, a subtropical estuarine wetland in Hong Kong. J Environ Sci (China) 19(6):657-62.
Li ZY, Fu MZ, We D.2008b. Distribution of nonylphenol in Jiaozhou Bay and its adjacent rivers. Oceanologia et Limnologia Sinica 39:599-603.
Loos R, Hanke G, Umlauf G, Eisenreich SJ. 2007. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 66(4):690-9.
Lun R, Lee K, De Marco L, Nalewajko C, Mackay D. 1998. A model of the fate of polycyclic aromatic hydrocarbons in the Saguenay Fjord, Canada. Environ Toxicol Chem. 17, 333-341.
Mackay D, Hickie B. 2000. Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec. Chemosphere. 41(5):681-92.
Mackay D. 1991.Multimedia Environmental Models: The Fugacity Approach. Lewis Publisher.
Mackay D. 1989. Modeling the long-term behavior of an organic contaminant in a large lake e application to Pcbs in Lake-Ontario. J Great Lakes Res 15, 283-297.
Manzano MA, Perales JA, Sales D, Quiroga JM. 1998. Effect of concentration on the biodegradation of a nonylphenol polyethoxylate in river water. Bull Environ Contam Toxicol 61(4):489-96.
Marwick C.1999. Hormonally active agents throughout the environment. JAMA. 25;282(8):722.
Mayer T, Bennie D, Rosa F, Rekas G, Palabrica V, Schachtschneider J. 2007. Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada. Environ Pollut 147(3):683-90.
Ning B, Graham N, Zhnag Y, Nakonechny M, El-Din MG. 2007. Degradation of Endocrine Disrupting Chemicals by Ozone/AOPs. Ozone Sci Eng 29:153-176.
Ning B, Graham Nigel JD, Zhang Y. 2007a .Degradation of octylphenol and nonylphenol by ozone - Part I: Direct reaction. Chemosphere 68(6), 1163–1172.
Paraskevi P, Voutsa D.2008. Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere.73(11): 1716-23.
Peng X, Wang Z, Mai B, Chen F, Chen S, Tan J, Yu Y, Tang C, Li K, Zhang G, Yang C. 2007. Temporal trends of nonylphenol and bisphenol A contamination in the Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores. Sci Total Environ 384(1-3):393-400.
Petrovic M, Barceló D, Diaz A, Ventura F. 2003. Low nanogram per liter determination of halogenated nonylphenols, nonylphenol carboxylates, and their non-halogenated precursors in water and sludge by liquid chromatography electrospray tandem mass spectrometry. J Am Soc Mass Spectrom. 14(5):516-27.
Quirós L, Céspedes R, Lacorte S, Viana P, Raldúa D, Barceló D, Piña B. 2005. Detection and evaluation of endocrine-disruption activity in water samples from Portuguese rivers. Environ Toxicol Chem 24(2):389-95.
Ra JS, Lee SH, Lee J, Kim HY, Lim BJ, Kim SH, Kim SD. 2011. Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters. J Environ Monit 13(1):101-9.
Rice CP, Schmitz-Afonso I, Loyo-Rosales JE, Link E, Thoma R, Fay L, Altfater D, Camp MJ. 2003. Alkylphenol and alkylphenol-ethoxylates in carp, water, and sediment from the Cuyahoga River, Ohio. Environ Sci Technol 37(17):3747-54.
Roepke TA, Snyder MJ, Cherr GN., 2005. Estradiol and endocrine disrupting compounds adversely affect development of sea urchin embryos at environmentally relevant concentrations. Aquat Toxicol 71:155–173
Shao B, Han H, Li D, Ma Y,Tu X, Wu Y. 2007. Analysis of alkylphenol and bisphenol A in meat by accelerated solvent extraction and liquid chromatography with tandem mass spectrometry. Food Chemistry 105(3): 5956-5966.
Singh S, Li SS. 2012. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. Gene 494(1):85-91.
Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. 2008. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34(7):1033-49.
Sonnenschein C, Soto AM. 1998. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 65(1-6):143-50.
Soto AM, Justicia H, Wray JW, Sonnenschein C.1991. P-Nonylphenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ Health Perspect 92:167–73.
Stachel B, Jantzen E, Knoth W, Krüger F, Lepom P, Oetken M, Reincke H, Sawal G, Schwartz R, Uhlig S.2005. The Elbe flood in August 2002--organic contaminants in sediment samples taken after the flood event. J Environ Sci Health A Tox Hazard Subst Environ Eng. 40(2):265-87.
Staples C, Mihaich E, Carbone J, Woodburn K, Klecka G. 2004. A weight of evidence analysis of the chronic ecotoxicity of nonylphenol ethoxylates, nonylphenol ether carboxylates, and nonylphenol. Hum Ecol Risk Assess 10(6): 999-1017.
Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR. 1998. A review of the environmental fate, effects, and exposures of bisphenol-A. Chemosphere 36, 2149-2173.
Stuart JD, Capulong CP, Launer KD, Pan X. 2005. Analyses of phenolic endocrine disrupting chemicals in marine samples by both gas and liquid chromatography-mass spectrometry. J Chromatogr A 1079:136-145.
Suárez S, Sueiro RA, Garrido J. 2000. Genotoxicity of the coating lacquer on food cans, bisphenol A diglycidyl ether (BADGE),its hydrolysis products and a chlorohydrin of BADGE. Mutat Res 470(2):221-8.
Sumpter JP. 1998. Xenoendocrine disrupters environmental impacts. Toxicology Letters 102-103: 337-42.
Susiarjo M, Hassold TJ, Freeman E, Hunt PA. 2007. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 3(1):e5.
Tan BL, Hawker DW, Müller JF, Leusch FD, Tremblay LA, Chapman HF. 2007. Modelling of the fate of selected endocrine disruptors in a municipal wastewater treatment plant in South East Queensland, Australia. Chemosphere 69, 644–654.
Tang R, Chen MJ, Ding GD, Chen XJ, Han XM, Zhou K, Chen LM, Xia YK, Tian Y, Wang XR. Associations of prenatal exposure to phenols with birth outcomes. Environ Pollut. 2013 Apr 2;178C:115-120.
Tsai WT. 2006. Human health risk on environmental exposure to bisphenol-A:a review. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 24(2):225-55.
USEPA (United States Environmental Protection Agency). 1990. Testing consent order on 4-nonylphenol, branched. Fed Reg 35: 5991-94.
Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. 2010. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 118(8):1055-70.
Vethaak AD, Lahr J, Schrap SM, Belfroid AC, Rijs GB, Gerritsen A, de Boer J, Bulder AS, Grinwis GC, Kuiper RV, Legler J, Murk TA, Peijnenburg W, Verhaar HJ, de Voogt P. 2005. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands. Chemosphere 59(4):511-24.
Vitali M, Ensabella F, Stella D, Guidotti M. 2004. Nonylphenols in freshwaters of the hydrologic system of an Italian district: association with human activities and evaluation of human exposure. Chemosphere 57(11):1637-47.
Vogelsang C, Grung M, Jantsch TG, Tollefsen KE, Liltved H. 2006. Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway. Water Res. 40(19):3559-70.
Voutsa D, Hartmann P, Schaffner C, Giger W. 2006. Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ Sci Pollut Res Int 13(5):333-41.
Wahlberg C,Renberg L,Widequist U. 1990. Determination of nonylphenol and nonylphenol ethoxylates as their pentafluorobenzoates in water, sewage sludge and biota. Chemosphere 20(1-2):179-195.
Wamg Y, Wang P, Fu J, Jiang G.2012. The air-water exchange of polychlorinated biphenyls and polybrominated diphenyl ethers at an urban lake, a receipt water body for the effluent from a municipal sewage treatment plant.Chemosphere. 86(3) :217-22.
White R, Jobling S,Hoare SA, Sumpter JP, ParkerMG. 1994.Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–82.
Wu Z, Zhang Z, Chen S, He F, Fu G, Liang W.2007. Nonylphenol and octylphenol in urban eutrophic lakes of the subtropical China. Fresenius Environ Bull16(1):227-234.
Xu H, Yang M, Qiu W, Pan C, Wu M. 2013.The impact of endocrine-disrupting chemicals on oxidative stress and innate immune response in Zebra fish embryos. Environ Toxicol Chem. doi: 10.1002/etc.2245.
Xu J, Wang P, Guo W, Dong J, Wang L, Dai S. 2006. Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere 65, 1445–1451.
Xu Y, Luo F, Pal A, Gin KY, Reinhard M. 2011. Occurrence of emerging organic contaminants in a tropical urban catchment in Singapore. Chemosphere 83(7):963-9.
Zgoła-Grześkowiak A, Grześkowiak T, Rydlichowski R, Łukaszewski Z. 2009. Determination of nonylphenol and short-chained nonylphenolethoxylates in drain water from an agricultural area. Chemosphere 75(4):513-8.
Zhang S, Zhang Q, Darisaw S, Ehie O, Wang G. 2007. Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere 66(6):1057-69.
Zhang YZ, Song XF, Kondoh A, Xia J, Tang CY. 2011. Behavior, mass inventories and modeling evaluation of xenobiotic endocrine-disrupting chemicals along an urban receiving wastewater river in Henan Province, China. Water Res 45(1):292-302.
Zhang YZ, Tang CY, Song XF, Li FD. 2009. Behavior and fate of alkylphenols in surface water of the Jialu River, Henan Province, China. Chemosphere. 77(4) :559-65.
Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q. 2008. Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater. 155(1-2):305-11.
行政院環保署環境檢驗所,”河川、湖泊及水庫水質採樣通則”,NIEA W104.51C
行政院環保署環境檢驗所,”底泥採樣方法”,NIEA S104.30C
行政院環保署環境檢驗所,”污泥廢棄物中總固體、固定性及揮發性固體含量檢測方法”,NIEA R212.01C
行政院環保署環境檢驗所,”環境檢驗室儀器及方法偵測極限測定指引”,NIEA PA107
郭怡伶.2010. 台灣地區主要河川底泥及魚體中壬基酚及雙酚A環境流布研究. 國立成功大學/環境醫學研究所/碩士論文
蔣伶霙.2011. 台灣地區河川環境水體、底泥、魚體壬基酚和雙酚A流布及釋放源解析研究. 國立成功大學/環境醫學研究所/碩士論文