簡易檢索 / 詳目顯示

研究生: 柯斯辰
Cabanilla, Frank
論文名稱: 建造自動施工檢測機器人架構:以鋼筋檢測為例
Building a Framework for the Autonomous Robot Construction Inspection - A Case study of Rebar Inspection
指導教授: 馮重偉
Feng, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 104
中文關鍵詞: 自主框架施工檢測自動化鋼筋檢測
外文關鍵詞: Autonomous framework, Construction Inspection, Automated Rebar Inspection
相關次數: 點閱:22下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建築檢驗行業對於確保設計佈局和圖紙中描述的元素的品質是必要的。然而,建築檢驗行業存在一些問題,例如耗時、勞動成本高或缺乏適當的監管要求。為了提高施工檢查的效率和效果,引入了機器人來協助執行不同的任務,例如使用雷達來檢查元件的尺寸,或使用 RGB-D 相機來檢測鋼筋的位置、尺寸和長度。在這項研究中,我們進行了廣泛的文獻綜述,修改了傳統和人機協作等不同的檢查方法;自動化方面,如機器人和感測器的類型;以及現有框架以及所使用的活動、技術和演算法。有了這些信息,就確定了檢查和自動化的目的。將資訊分類、彙總和分析,規範資訊。本文的目的是透過使用不同的自動化方法來建立建築檢查行業自動化指南。為了證明所提出的框架,將在鋼筋檢驗中進行案例研究。本研究旨在為研究界提供指導,以實現建築檢查行業各個方面的自動化。

    The Construction Inspection Industry is necessary to ensure the quality of the elements as described in the design layouts and drawings. However, several problems have been related to the construction inspection industry, such as time-consuming, cost-labor, or lack of appropriate regulatory requirements. To improve the efficiency and effectiveness of construction inspection, robots have been introduced to assist in different tasks, such as LiDAR to check size of elements, or RGB-D Cameras to detect steel bar locations, size, and lengths. On this research, an extensive literature review was conducted revising the different approaches of inspection, as traditional and human-robot collaboration; aspects of automation, as types of robots and sensors; and existing frameworks with the used activities, technologies, and algorithms. With this information, the purpose of inspection and automation was defined. The classification, summary and analysis were conducted to normalize the information. The purpose of this paper is to build a guide for automating the construction inspection industry by using different automation approaches. To prove the suggested approach, a practical example will be studied focusing on rebar inspections. This study aims to give the research community a guide to achieve automation in any aspect of the construction inspection industry.

    ABSTRACT i ABSTRACT (中文) ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix CHAPTER 1: INTRODUCTION 1 1.1 BACKGROUND AND OVERVIEW 1 1.2 OBJECTIVES OF THE RESEARCH 4 1.3 RESEARCH SCOPE AND LIMITATIONS 4 1.4 RESEARCH PROCEDURE 5 1.5 THESIS ORGANIZATION 5 CHAPTER 2: LITERATURE REVIEW 7 2.1 PROBLEM STATEMENT 7 2.2 APPROACHES TO THE INSPECTION INDUSTRY 8 2.2.1 Traditional Approach 10 2.2.2 Human-Robot Collaboration Approach 13 2.3 AUTOMATION ASPECTS 16 2.3.1 Types of Robots 17 2.3.2 Sensors 20 2.3.3 Communication 22 2.3.4 Navigation 25 2.4 SUMMARY 28 CHAPTER 3: ANALYSIS ON EXISTING APPROACHES 29 3.1 LITERATURE SELECTION AND REVIEW 29 3.1.1 Pre-construction stage. 30 3.1.2 Construction stage. 32 3.1.3 Operation and Maintenance stage. 39 3.2 FACTOR ANALYSIS 41 3.2.1 Definition of common activities 41 3.2.2 Identification of automation needs 42 3.2.3 State-of-the-art solutions 43 3.3 SUMMARY 46 CHAPTER 4: FRAMEWORK DEVELOPMENT 48 4.1. GENERAL CONSIDERATIONS 48 4.2. PRE-PROCESSING REQUIREMENTS 49 4.3. OPERATION REQUIREMENTS 51 4.3.1. Pre-Construction Phase 51 4.3.2. Construction Phase 53 4.3.3. Operation and Maintenance Phase 56 4.4. POST-PROCESSING REQUIREMENTS 58 4.5. STANDARD OPERATION PROCEDURE 58 CHAPTER 5: RESULTS CASE STUDY 60 5.1. LITERATURE REVIEW: REBAR INSPECTION ROBOTS 60 5.2. OBJECTIVES OF THE CASE STUDY 62 5.3. SCOPE AND LIMITATIONS OF CASE STUDY 63 5.4. ROBOT INSPECTION PROCESS 64 5.4.1. Pre-processing Phase 64 5.4.2. Expected Operation Phase 67 5.4.3. Expected Post-Processing Phase 68 5.5. PROPOSED SOLUTION 69 5.5.1. Verification 71 5.5.2. Visualization 72 5.5.3. Cost 73 5.5.4. Advantages 74 CHAPTER 6: CONCLUSIONS AND FUTURE RESEARCH 76 6.1. CONCLUSIONS 76 6.2. FUTURE WORK 79 REFERENCES 82

    Ahn, H., Lee, C., Kim, M., Kim, T., Lee, D., Kwon, W., & Cho, H. (2023). Applicability of smart construction technology: Prioritization and future research directions. In Automation in Construction (Vol. 153). Elsevier B.V. https://doi.org/10.1016/j.autcon.2023.104953
    Ahzahar, N., Karim, N. A., Hassan, S. H., & Eman, J. (2011). A study of contribution factors to building failures and defects in construction industry. Procedia Engineering, 20, 249–255. https://doi.org/10.1016/j.proeng.2011.11.162
    Akinradewo, O. I., Aigbavboa, C. O., Okafor, C. C., Oke, A. E., & Thwala, D. W. (2021). A Review of the Impact of Construction Automation and Robotics on Project Delivery. IOP Conference Series: Materials Science and Engineering, 1107(1), 012011. https://doi.org/10.1088/1757-899x/1107/1/012011
    Ali, A. S., & Wen, K. H. (2011). Building Defects: Possible Solution for Poor Construction Workmanship. Journal of Building Performance, 2(1), 59–69.
    Alizadehsalehi, S., Hadavi, A., & Huang, J. C. (2020). From BIM to extended reality in AEC industry. Automation in Construction, 116. https://doi.org/10.1016/j.autcon.2020.103254
    Amparore, D., Sica, M., Verri, P., Piramide, F., Checcucci, E., De Cillis, S., Piana, A., Campobasso, D., Burgio, M., Cisero, E., Busacca, G., Di Dio, M., Piazzolla, P., Fiori, C., & Porpiglia, F. (2024). Computer Vision and Machine-Learning Techniques for Automatic 3D Virtual Images Overlapping During Augmented Reality Guided Robotic Partial Nephrectomy. Technology in Cancer Research and Treatment, 23. https://doi.org/10.1177/15330338241229368
    Atherinis, D., Bakowski, B., Velcek, M., & Moon, S. (2018). Developing and Laboratory Testing a Smart System for Automated Falsework Inspection in Construction. Journal of Construction Engineering and Management, 144(3). https://doi.org/10.1061/(asce)co.1943-7862.0001439
    Boukamp, F., & Akinci, B. (2007). Automated processing of construction specifications to support inspection and quality control. Automation in Construction, 17(1), 90–106. https://doi.org/10.1016/j.autcon.2007.03.002
    Byun, Y., & Sohn, B. S. (2020). ABGS: A system for the automatic generation of building information models from two-dimensional CAD drawings. Sustainability (Switzerland), 12(17). https://doi.org/10.3390/SU12176713
    Cai, S., Ma, Z., Skibniewski, M. J., Bao, S., & Wang, H. (2020). Construction Automation and Robotics for High-Rise Buildings: Development Priorities and Key Challenges. Journal of Construction Engineering and Management, 146(8). https://doi.org/10.1061/(asce)co.1943-7862.0001891
    Chaiyasarn, K., Buatik, A., & Likitlersuang, S. (2021). Concrete crack detection and 3D mapping by integrated convolutional neural networks architecture. Advances in Structural Engineering, 24(7), 1480–1494. https://doi.org/10.1177/1369433220975574
    Chang, L., Wang, Y., Feng, G., Li, Y., & Wang, L. (2018). Research on problems and solutions in construction quality supervision of construction projects. Smart Construction Research, 2(1). https://doi.org/10.18063/scr
    Chang, S., Siu, M.-F. F., & Li, H. (2023). Development of a Fuzzy Logic Controller for Autonomous Navigation of Building Inspection Robots in Unknown Environments. Journal of Computing in Civil Engineering, 37(4). https://doi.org/10.1061/jccee5.cpeng-5060
    Chen, H., Xia, G., Liu, X., & Wu, C. (2023). Research on Path Planning and Machine Learning Module in Vision Navigation System of Indoor Mobile Robot. In J. Hung, N. Yen, & J.-W. Chang (Eds.), Frontier Computing on Industrial Applications: Proceedings of Theory, Technologies and Applications (FC 2023) (1st ed., Vol. 1, pp. 416–422). Springer.
    Cheng, W., Sun, H. H., Tan, K. H., & Fan, Z. (2023). Estimating the diameter of reinforcing bars using an ultra-wideband MIMO GPR array. Construction and Building Materials, 365. https://doi.org/10.1016/j.conbuildmat.2022.129924
    Choi, M., Kim, S., & Kim, S. (2024). Semi-automated visualization method for visual inspection of buildings on BIM using 3D point cloud. Journal of Building Engineering, 81. https://doi.org/10.1016/j.jobe.2023.108017
    Chong, W.-K., & Low, S.-P. (2005). Assessment of Defects at Construction and Occupancy Stages. Journal of Performance of Constructed Facilities, 19(4), 283–289. https://doi.org/10.1061/ASCE0887-3828200519:4283
    Chow, J. K., Liu, K. fu, Tan, P. S., Su, Z., Wu, J., Li, Z., & Wang, Y. H. (2021). Automated defect inspection of concrete structures. Automation in Construction, 132. https://doi.org/10.1016/j.autcon.2021.103959
    Ellenberg, A., Kontsos, A., Moon, F., & Bartoli, I. (2016). Bridge deck delamination identification from unmanned aerial vehicle infrared imagery. Automation in Construction, 72, 155–165. https://doi.org/10.1016/j.autcon.2016.08.024
    El-Sheimy, N., & Li, Y. (2021). Indoor navigation: state of the art and future trends. In Satellite Navigation (Vol. 2, Issue 1). Springer. https://doi.org/10.1186/s43020-021-00041-3
    Forcada, N., MacArulla, M., Gangolells, M., & Casals, M. (2014). Assessment of construction defects in residential buildings in Spain. Building Research and Information, 42(5), 629–640. https://doi.org/10.1080/09613218.2014.922266
    Frangez, V., Lloret-Fritschi, E., Taha, N., Gramazio, F., Kohler, M., & Wieser, A. (2021). Depth-camera-based rebar detection and digital reconstruction for robotic concrete spraying. Construction Robotics, 5(3–4), 191–202. https://doi.org/10.1007/s41693-021-00063-y
    Gibb, S., La, H. M., Le, T., Nguyen, L., Schmid, R., & Pham, H. (2018). Nondestructive evaluation sensor fusion with autonomous robotic system for civil infrastructure inspection. Journal of Field Robotics, 35(6), 988–1004. https://doi.org/10.1002/rob.21791
    Gordon, C., Akinci, B., & Garrett, J. H. (2007). Formalism for Construction Inspection Planning: Requirements and Process Concept. Journal of Computing in Civil Engineering, 27(1), 29–38. https://doi.org/10.1061/ASCE0887-3801200721:129
    Gordon, C., Akinci, B., & Garrett, J. H. (2008). Automated planning support for on-site construction inspection. Automation in Construction, 17(6), 705–718. https://doi.org/10.1016/j.autcon.2007.12.002
    Halder, S., Afsari, K., Chiou, E., Patrick, R., & Hamed, K. A. (2023). Construction inspection & monitoring with quadruped robots in future human-robot teaming: A preliminary study. Journal of Building Engineering, 65. https://doi.org/10.1016/j.jobe.2022.105814
    Hsu, H. W., & Hsieh, S. H. (2019). Applying Augmented Reality Technique to Support On-site Rebar Inspection. 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), 1312–1318.
    Huang, B., Liao, H., Ge, Y., Zhang, W., Kang, H., Wang, Z., & Wu, J. (2023). Development of BIM Semantic Robot Autonomous Inspection and Simulation System. 2023 9th International Conference on Mechatronics and Robotics Engineering, ICMRE 2023, 35–40. https://doi.org/10.1109/ICMRE56789.2023.10106602
    Huang, Z., & Geng, J. (2024). Research on laser-based mobile robot SLAM and autonomous navigation. Journal of Physics: Conference Series, 2711(1). https://doi.org/10.1088/1742-6596/2711/1/012021
    Humpe, A. (2020). Bridge inspection with an off-the-shelf 360° camera drone. Drones, 4(4), 1–23. https://doi.org/10.3390/drones4040067
    Jaafar, H. A., & Alsadik, B. (2023). Prospects of Consumer-Grade UAVs for Overpass Bridges Pier Pads Alignment. Remote Sensing, 15(4). https://doi.org/10.3390/rs15040877
    Jeon, D., Kim, M. K., Jeong, Y., Oh, J. E., Moon, J., Kim, D. J., & Yoon, S. (2022). High-accuracy rebar position detection using deep learning–based frequency-difference electrical resistance tomography. Automation in Construction, 135. https://doi.org/10.1016/j.autcon.2021.104116
    Jung, S., Song, S., Kim, S., Park, J., Her, J., Roh, K., & Myung, H. (2019). Toward Autonomous Bridge Inspection: A framework and experimental results. 16th International Conference on Ubiquitous Robots (UR), 208–211.
    Kardovskyi, Y., & Moon, S. (2021). Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision. Automation in Construction, 130. https://doi.org/10.1016/j.autcon.2021.103850
    Kim, M. K., Thedja, J. P. P., Chi, H. L., & Lee, D. E. (2021). Automated rebar diameter classification using point cloud data based machine learning. Automation in Construction, 122. https://doi.org/10.1016/j.autcon.2020.103476
    Ko, C. H., & Li, S. C. (2014). Enhancing submittal review and construction inspection in public projects. Automation in Construction, 44, 33–46. https://doi.org/10.1016/j.autcon.2014.03.027
    La, H. M., Gucunski, N., Dana, K., & Kee, S. H. (2017). Development of an autonomous bridge deck inspection robotic system. Journal of Field Robotics, 34(8), 1489–1504. https://doi.org/10.1002/rob.21725
    Lee, S. J., Kwon, S. W., Jeong, M. K., Hasan, S. M., & Kim, A. (2020). Automated on-site quality inspection and reporting technology for off-site construction(osc)-based precast concrete members. Proceedings of the 37th International Symposium on Automation and Robotics in Construction, ISARC 2020: From Demonstration to Practical Use - To New Stage of Construction Robot, 1152–1159. https://doi.org/10.22260/isarc2020/0158
    Lenz, B., Hasselbruch, H., & Mehner, A. (2020). Automated evaluation of Rockwell adhesion tests for PVD coatings using convolutional neural networks. Surface and Coatings Technology, 385. https://doi.org/10.1016/j.surfcoat.2020.125365
    Leonidas, E., & Xu, Y. (2018). The Development of an Automatic Inspection System Used for the Maintenance of Rail Tunnels.
    Li, Y., Lu, Y., & Chen, J. (2021). A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector. Automation in Construction, 124. https://doi.org/10.1016/j.autcon.2021.103602
    Liao, C. W., & Chiang, T. L. (2012). Designing of dynamic labor inspection system for construction industry. Expert Systems with Applications, 39(4), 4402–4409. https://doi.org/10.1016/j.eswa.2011.09.151
    Ling, F., Jimenez-Rodriguez, A., & Prescott, T. (2019). Obstacle Avoidance Using Stereo Vision and Deep Reinforcement Learning in an Animal-like Robot. Proceeding of the IEEE International Conference on Robotics and Biomimetics, 71–76.
    Lins, R. G., Givigi, S. N., Freitas, A. D. M., & Beaulieu, A. (2018). Autonomous Robot System for Inspection of Defects in Civil Infrastructures. IEEE Systems Journal, 12(2), 1414–1422. https://doi.org/10.1109/JSYST.2016.2611244
    Liu, H., Wang, D., Xu, K., Zhou, P., & Zhou, D. (2023). Lightweight convolutional neural network for counting densely piled steel bars. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104692
    Love, P. E. D., Edwards, D. J., Irani, Z., & Walker, D. H. T. (2009). Project pathogens: The anatomy of omission errors in construction and resource engineering project. IEEE Transactions on Engineering Management, 56(3), 425–435. https://doi.org/10.1109/TEM.2008.927774
    Love, P. E. D., Lopez, R., & Edwards, D. J. (2013). Reviewing the past to learn in the future: Making sense of design errors and failures in construction. Structure and Infrastructure Engineering, 9(7), 675–688. https://doi.org/10.1080/15732479.2011.605369
    Luo, C., Yu, L., Yan, J., Li, Z., Ren, P., Bai, X., Yang, E., & Liu, Y. (2021). Autonomous detection of damage to multiple steel surfaces from 360° panoramas using deep neural networks. Computer-Aided Civil and Infrastructure Engineering, 36(12), 1585–1599. https://doi.org/10.1111/mice.12686
    Ma, W. (2024). Automatic Quality Inspection and Intelligent Prevention of Prefabricated Building Construction Based on BIM and Fuzzy Logic. Decision Making: Applications in Management and Engineering, 7(2), 65–80. https://doi.org/10.31181/dmame722024991
    McLaughlin, E., Charron, N., & Narasimhan, S. (2020). Automated Defect Quantification in Concrete Bridges Using Robotics and Deep Learning. Journal of Computing in Civil Engineering, 34(5). https://doi.org/10.1061/(asce)cp.1943-5487.0000915
    Meegoda, J. N., Kewalramani, J. A., & Saravanan, A. (2019). Adapting 360-Degree Cameras for Culvert Inspection: Case Study. Journal of Pipeline Systems Engineering and Practice, 10(1). https://doi.org/10.1061/(asce)ps.1949-1204.0000352
    Menendez, E., Victores, J. G., Montero, R., Martínez, S., & Balaguer, C. (2018). Tunnel structural inspection and assessment using an autonomous robotic system. Automation in Construction, 87, 117–126. https://doi.org/10.1016/j.autcon.2017.12.001
    Meng, Q., Yang, J., Zhang, Y., Yang, Y., Song, J., & Wang, J. (2023). A Robot System for Rapid and Intelligent Bridge Damage Inspection Based on Deep-Learning Algorithms. Journal of Performance of Constructed Facilities, 37(6). https://doi.org/10.1061/jpcfev.cfeng-4433
    Mirzaei, K., Arashpour, M., Asadi, E., Masoumi, H., Mahdiyar, A., & Gonzalez, V. (2023). End-to-end point cloud-based segmentation of building members for automating dimensional quality control. Advanced Engineering Informatics, 55. https://doi.org/10.1016/j.aei.2023.101878
    Mishra, M., & Lourenço, P. B. (2024). Artificial intelligence-assisted visual inspection for cultural heritage: State-of-the-art review. In Journal of Cultural Heritage (Vol. 66, pp. 536–550). Elsevier Masson s.r.l. https://doi.org/10.1016/j.culher.2024.01.005
    Morgenthal, G., Hallermann, N., Kersten, J., Taraben, J., Debus, P., Helmrich, M., & Rodehorst, V. (2019). Framework for automated UAS-based structural condition assessment of bridges. Automation in Construction, 97, 77–95. https://doi.org/10.1016/j.autcon.2018.10.006
    Nielsen, K. J. (2017). A comparison of inspection practices within the construction industry between the Danish and Swedish Work Environment Authorities. Construction Management and Economics, 35(3), 154–169. https://doi.org/10.1080/01446193.2016.1231407
    Osório, F., Wolf, D., Castelo Branco, K., & Pessin, G. (2010, September 20). Mobile Robots Design and Implementation: From Virtual Simulation to Real Robots. Proceedings of IDMME - Virtual Concept 2010. http://www.inct-sec.org/actrep/
    Paton-Cole, V. P., & Aibinu, A. A. (2021). Construction Defects and Disputes in Low-Rise Residential Buildings. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 13(1). https://doi.org/10.1061/(asce)la.1943-4170.0000433
    Patruno, C., Renò, V., Nitti, M., Mosca, N., di Summa, M., & Stella, E. (2024). Vision-based omnidirectional indoor robots for autonomous navigation and localization in manufacturing industry. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e26042
    Sandanayake, M., Yang, W., Chhibba, N., & Vrcelj, Z. (2022). Residential building defects investigation and mitigation – a comparative review in Victoria, Australia, for understanding the way forward. Engineering, Construction and Architectural Management, 29(9), 3689–3711. https://doi.org/10.1108/ECAM-03-2021-0232
    Sanhudo, L., Ramos, N. M. M., Martins, J. P., Almeida, R. M. S. F., Barreira, E., Simões, M. L., & Cardoso, V. (2020). A framework for in-situ geometric data acquisition using laser scanning for BIM modelling. Journal of Building Engineering, 28. https://doi.org/10.1016/j.jobe.2019.101073
    Schultz, C. S., Jørgensen, K., Bonke, S., & Rasmussen, G. M. G. (2015). Building defects in Danish construction: project characteristics influencing the occurrence of defects at handover. Architectural Engineering and Design Management, 11(6), 423–439. https://doi.org/10.1080/17452007.2014.990352
    Shim, S., Lee, S. W., Cho, G. C., Kim, J., & Kang, S. M. (2023). Remote robotic system for 3D measurement of concrete damage in tunnel with ground vehicle and manipulator. Computer-Aided Civil and Infrastructure Engineering, 38(15), 2180–2201. https://doi.org/10.1111/mice.12982
    Shin, H. J., & Cha, H. S. (2023). Proposing a Quality Inspection Process Model Using Advanced Technologies for the Transition to Smart Building Construction. Sustainability (Switzerland), 15(1). https://doi.org/10.3390/su15010815
    Shin, Y., Heo, S., Han, S., Kim, J., & Na, S. (2021). An image-based steel rebar size estimation and counting method using a convolutional neural network combined with homography. Buildings, 11(10). https://doi.org/10.3390/buildings11100463
    Sivasuriyan, A., Vijayan, D. S., Górski, W., Wodzyń, Ł., Vaverková, M. D., & Koda, E. (2021). Practical implementation of structural health monitoring in multi-story buildings. Buildings, 11(6). https://doi.org/10.3390/buildings11060263
    Sun, J., Zhao, J., Hu, X., Gao, H., & Yu, J. (2023). Autonomous Navigation System of Indoor Mobile Robots Using 2D Lidar. Mathematics, 11(6). https://doi.org/10.3390/math11061455
    Wooden, D., Malchano, M., Blankespoor, K., Howard, A., Rizzi, A., & Raibert, M. (2010). Autonomous Navigation for BigDog (2010 IEEE International Conference on Robotics and Automation, Ed.). 2010 IEEE International Conference on Robotics and Automation.
    Xi, J., Gao, L., Zheng, J., Wang, D., Tu, C., Jiang, J., Miao, Y., & Zhong, J. (2023). Automatic spacing inspection of rebar spacers on reinforcement skeletons using vision-based deep learning and computational geometry. Journal of Building Engineering, 79. https://doi.org/10.1016/j.jobe.2023.107775
    Xu, X., Jeon, J. H., Zhang, Y., Yang, L., & Cai, H. (2021). Automatic generation of customized checklists for digital construction inspection. In Transportation Research Record (Vol. 2675, Issue 5, pp. 418–435). SAGE Publications Ltd. https://doi.org/10.1177/0361198121995825
    Yan, R. J., Kayacan, E., Chen, I. M., Tiong, L. K., & Wu, J. (2019). QuicaBot: Quality Inspection and Assessment Robot. IEEE Transactions on Automation Science and Engineering, 16(2), 506–517. https://doi.org/10.1109/TASE.2018.2829927
    Yasuda, Y. D. V., Martins, L. E. G., & Cappabianco, F. A. M. (2020). Autonomous visual navigation for mobile robots: A systematic literature review. In ACM Computing Surveys (Vol. 53, Issue 1). Association for Computing Machinery. https://doi.org/10.1145/3368961
    Yuan, X., Smith, A., Moreu, F., Sarlo, R., Lippitt, C. D., Hojati, M., Alampalli, S., & Zhang, S. (2023). Automatic evaluation of rebar spacing and quality using LiDAR data: Field application for bridge structural assessment. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104708
    Yuan, X., Smith, A., Sarlo, R., Lippitt, C. D., & Moreu, F. (2021). Automatic evaluation of rebar spacing using LiDAR data. Automation in Construction, 131. https://doi.org/10.1016/j.autcon.2021.103890
    Zhang, X., Zhang, J., Ma, M., Chen, Z., Yue, S., He, T., & Xu, X. (2018). A high precision quality inspection system for steel bars based on machine vision. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082732
    Zhou, S., & Song, W. (2020). Concrete roadway crack segmentation using encoder-decoder networks with range images. Automation in Construction, 120. https://doi.org/10.1016/j.autcon.2020.103403
    Zhu, K., Zhang, Y., Meng, X., & Ma, Z. (2022). Structural Assembly Analysis of Concrete Buildings with Intelligent Finite Element Analysis. Journal of Sensors, 2022. https://doi.org/10.1155/2022/6701021

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE