| 研究生: |
李家逸 Lee, Chia-I |
|---|---|
| 論文名稱: |
添加Ti、W、Zr和Cr碳氮鍍層之性質特徵、磨潤與抗菌性分析 Characterization, tribology and antibacterial performance of carbon nitride coatings with metal doping – Ti, W, Zr or Cr |
| 指導教授: |
蘇演良
Su, Yen-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 碳氮鍍膜 、鋯 、鎢 、鉻 、鈦 、磁控濺鍍 、接觸角 、金黃色葡萄球菌 |
| 外文關鍵詞: | Carbonitride coating, zirconium, tungsten, chromium, titanium, magnetron sputtering, contact angle, Staphylococcus aureus |
| 相關次數: | 點閱:160 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以非平衡磁控濺鍍被覆添加金屬之碳氮鍍層為研究材料:分別添加鉻金屬、鎢金屬、鈦金屬和鋯金屬。針對上述四種添加金屬之碳氮系列鍍層,研究其特性、各項機械性質、接觸角、抗腐蝕能力…等。培養金黃色葡萄球菌以進行抗菌能力的測試,最後綜合分析各項性質對抗菌能力的影響。
實驗得到以下一系列結果:表面粗糙度在奈米等級下對抗菌效率沒有直接的影響,推測原因為因為細菌大小在0.5μm-1μm之間,奈米尺度的表面粗糙度所形成之坑洞不足以讓細菌殘留。在接觸角方面,接觸角度越大,抗菌效果也越好,接觸角度越大,其表面越是疏水,細菌不容易在鍍層表面滯留。抗腐蝕能力方面,腐蝕電位越大抗腐蝕能力越好,因為抗腐蝕能力越好,表面形成坑洞而造成細菌殘留堆積的情況也跟著減少。CN15Cr2A鍍層上經24小時培養後細菌的殘存量,為抗菌性最好的試片,抗菌性高達84.3%,而接觸角為94.90˚,腐蝕電位為-0.119V,疏水性的表面,高抗腐蝕能力,完全遵循上述研究結果。
ZrCN WCN CrCN TiCN and CN coatings, deposited by reactive magnetron sputtering, were investigated as possible to be used as protective layers on medical implants. Adds support for the four series of metal carbon coating, study its properties, the mechanical properties, contact angle, corrosion resistance ... and so on. S. aureus culture for testing antimicrobial activity, and finally a comprehensive analysis of the impact of the nature of the antimicrobial capabilities.
A series of experiments the following results: The surface roughness in the nanometer level has no direct effect on the antibacterial efficiency, presumably due to the size of the crater because the bacteria in 0.5μm-1μm between nanoscale surface roughness formed by the inadequate to allow residual bacteria. In terms of the contact angle, the greater the contact angle, the better antibacterial effect, the greater the contact angle, the more hydrophobic surface, bacteria are not readily retained in the coating surface. Anti-corrosion ability, the greater the corrosion resistance, the better the corrosion potential capacity, because the better the corrosion resistance, the surface of the crater caused by the accumulation of residues in the case of bacterial reduction followed. The residual amount of bacteria after 24 hours culture on CN15Cr2A coating, as best antimicrobial test pieces, antimicrobial 84.3%, and the contact angle 94.90˚, the corrosion potential of -0.119V, hydrophobic surface, high resistance to corrosion ability to fully comply with the above findings.
[1]內政部統計處(http://www.moi.gov.tw/stat/index.aspx)
[2]C.H. Lai, Y.Y Chang, H.L Huang, H.Y. Kao, “Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants”, Thin Solid Films, 520 (2011) 1525-1531.
[3]Y.Y. Chang, H.L. Huang, Y.C. Chen, J.C. Weng, C.H. Lai, “Characterization and antibacterial performance of ZrNO-Ag coatings”, Surface & Coatings Technology, 231 (2013) 224-228.
[4]余東海,非平衡磁控溅射的結構和運用,廣東工業大學機電學院。(http://www.chvacuum.com/application/film/051056.html)
[5]楊玉森、黃文毅、周誌宏、黃煒盛,利用非平衡磁控濺鍍法濺鍍氮化鉻薄膜之研究,國立高雄第一科技大學。
(http://www.yoke.net/Chinese/..%5CPic%5CDocHistory%5CE8PZ01J3WDDG0077(1).pdf)
[6]A.Y. Liu, M.L. Cohen, “Prediction of New Low Compressibility Solids”, Science, 245 (1989) 841.
[7]W.T. Zheng, N. Hellgren, H. Sjoestroem, J.E. Sundgren, “Characterization of carbon nitride thin films deposited by reactive D.C. magnetron sputtering on various substrate materials”, Surface & Coatings Technology, 100-101 (1998) 287-290.
[8]W. Zhenga, H. Jib, W. Yua, H. Lia, Z. Jinb, Y. Wanga, J.E. Sundgrenc “Structure and properties of carbon nitride thin films deposited by magnetron sputtering”, Materials Chemistry and Physics, 60 (1999) 163-167.
[9]K. Kato, M. Bai, N. Umehara, Y. Miyake, “Effect of internal stress of CNx coating on its wear in sliding friction” , Surface & Coatings Technology, 113 (1999) 233-241.
[10]Y.S. Park, H.S. Myung, J.G. Han, B. Hong, “Characterization of CNx thin films prepared by close filed unbalanced magnetron sputtering”, Thin Solid Films, 475 (2005) 298-302.
[11]N.A de Sanchez, C. Carrascob, P. Prietoc, “Effect of nitrogen content on the microstructure and mechanical properties of CNx thin films”, Physica B 337 (2003) 318-322.
[12]A.G. Fitzgerald, L. Jiang, M.J. Rose, T.J. Dines, “Microstructural properties of amorphous carbon nitride films synthesized by dc magnetron sputtering”, Applied Surface Science, 175-176 (2001) 525-530.
[13]C. Niu, Y.Z. Lu, C.M. Lieber, “Experimental realization of the covalent solid carbon nitride”, Science, 261 (1993) 334.
[14]D. Sarangi, R. Sanjines, A. Karimi, “Enhancement of the mechanical properties of the carbon nitride thin films by doping”, Carbon 42 (2004) 1107-1111.
[15]A. Nossa, A. Cavaleiro, “The influence of the addition of C and N on the wear behavior of W-S-C/N coatings”, Surface & Coatings Technology, 142-144 (2001) 984-991.
[16]A.E. Reiter, B. Brunner, M. Ante, J. Rechberger, “Investigation of several PVD coating for blind hole tapping in austenitic stainless steel”, Surface & Coatings Technology, 200 (2006) 5532-5541.
[17]C.M. Cotrut, V. Braic, M. Balaceanu, I. Titorencu, M. Braic, A.C. Parau, “Corrosion resistance, mechanical properties and biocompatibility of Hf-containting ZrCN coatings”, Thin Solid Films 538 (2013) 45-55
[18]H.L. Huang, Y.Y. Chang, M.C. Lai, C.R. Lin, C.H. Lai, T.M. Shieh,“Antibacterial TaN-Ag coatings on titanium dental implants”,Surface & Coatings Technology 205 (2010) 1636-1641.
[19]H. Zhou, L Xu, A. Ogino, M. Nagatsu,“Investigation into the antibacterial property of carbon films”Diamond & Related Materials 17 (2008) 1416–1419.
[20]H. Zhou, L. Xu, A. Ogino, M. Nagatsu, “Investigation into the antibacterial property of carbon films”, Diamond & Related Materials 17 (2008) 1416–1419.
[21]洪尚賢,“碳氮鍍膜添加鋯之機械性質與磨潤性質研究",國立成功大學機械工程學系,碩士論文,民國104年。
[22]許嘉睿,“碳氮鍍膜添加鎢之機械性質與磨潤性質研究",國立成功大學機械工程學系,碩士論文,民國103年。
[23]黃越,“使用氣體碳源濺鍍鉻碳氮鍍膜之機械性質與磨潤性質研究",國立成功大學機械工程學系,碩士論文,民國104年。
[24]葉貴誠,“直流磁控濺鍍添加鈦金屬元素對碳氮鍍層(a-CNx)之機械性質與磨潤性質之影響",國立成功大學機械工程學系,碩士論文,民國105年。
[25]楊宗瑋,“生醫級Ti6Al4V合金與316L不鏽鋼晶表面處理後的電化學反應、生醫相容性和磨耗性質之研究",國立成功大學機械工程學系,碩士論文,民國102年。
[26]T. Arai, H. fujita, M. Watanabe, “Evaluation of adhesion strength of thin hard coating”, Thin Solid Film, 154 (1987) 387-401.
[27]Y.Y. Chang, H.L. Huang, H.J. Chena, C.H. Lai, C.Y. Wen, “Antibacterial properties and cytocompatibility of tantalum oxide coatings”, Surface & Coatings Technology 259 (2014) 193-198