簡易檢索 / 詳目顯示

研究生: 陳昶安
Chen, Chang-An
論文名稱: 以農業及工業廢棄物合成高比表面積之多重孔洞碳材應用於染料吸附與超級電容
Synthesis of Multiporous Carbon with High Specific Surface Areas from Agricultural and Industrial Wastes for the Applications in Dye Adsorption and Supercapacitor
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 116
中文關鍵詞: 多重孔洞碳材染料吸附超級電容水質淨化循環經濟
外文關鍵詞: multiporous carbon, supercapacitor, dye adsorption, circular economy, green chemistry
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出以低成本的綠色製程處理農業廢棄物菱角殼及工業廢棄物電木板,合成高比表面積且具備不同孔徑的多重孔洞碳材料,並將其應用於染料吸附及組裝超級電容器。以農業廢棄物菱殼碳為例,可以經由簡單的絕氧碳化得到初步材料後,與助活化劑及活化劑在溼式狀態下混合均勻,再經過高溫裂解其比表面積即可高達715~1431 m2g-1。將以菱角殼為原料所合成之多重孔洞碳材應用於染料吸附時,吸附甲基橙之理論飽和吸附量可達427 mg/g,吸附亞甲基藍染料則可達539 mg/g。將碳材料應用於超級電容器上,多重孔洞碳材可以在1.0 M TEABF4/PC 有機電解液環境中,達到94 F/g的電容值 (掃描速率為2 mV/s),且在高掃描速率下 (200 mV/s) 仍可維持62% 之電容值。
    工業廢棄物電木板初步碳化後則可以簡單的浸泡KOH溶液再經過高溫裂解,可以得到比表面積約 976~1659 m2g-1的多重孔洞碳材,且用於浸泡的KOH溶液也可以再次進行利用,達到循環經濟的效果。將此多重孔洞碳材應用於染料吸附,吸附甲基橙染料時理論飽和吸附量可達481 mg/g,吸附亞甲基藍染料則可達575 mg/g。組裝超級電容時,電容值可以高達97 F/g,且在高速掃描時可以維持70% 以上的電容值。
    因此,本研究期望可以利用綠色化學的製程合成高比表面積之多重孔洞碳材料,如此一來不僅可以解決台灣高碳含量之農、工業廢棄物的問題,更可以將這些廢棄資源轉變為高經濟價值的活性碳,並利用於水質淨化及能量儲存等綠色用途,符合循環經濟的理念,並且具有商業價值及廣大的應用前景。

    Porous carbons are used for multifarious applications nowadays (including electric storage devices, catalysis, water treatment, and so on) due to their many favorable properties, such as good conductivity, high permeability, high surface area, and an abundance of active sites. In this study, we propose to synthesize multiporous carbons (MPCs) materials with high specific surface area and wide pore sizes distribution by processing agricultural waste water-chestnut-shell biochar (WCSB) and industrial waste Bakelite via a simple and dust-free blending method. The experimental results shows that the MPCs synthesized by either WCSB or Bakelite could have a very high specific surface area of up to 1600 m2 g-1 and a high specific capacitance of up to 97 F g-1 with a good retention rate (~70%) even at 200 mV s-1 in TEABF4/PC organic electrolyte. In terms of dye adsorption, the saturation adsorption capacity of the MPCs can reach 481 mg/g for methyl orange and 575 mg/g for methylene blue. Therefore, this study expects to synthesize MPCs with high specific surface area by using green chemistry process, which not only can solve the problem of agricultural and industrial waste in Taiwan, but also can transform these waste resources into activated carbon with high economic value and be used for green applications such as water purification and energy storage, which is in line with the concept of circular economy and has commercial value and wide application prospect.

    目錄 I 表目錄 IV 圖目錄 VI 第一章 緒論 1 1.1前言 1 1.2 孔洞材料 1 1.3多重孔洞碳材 2 1.4孔洞材料的合成 3 1.4.1 硬模板法 3 1.4.2 軟模板法 4 1.4.3 物理活化法 5 1.4.4 化學活化法 6 1.5有機染料吸附 7 1.6電容器 (Capacitor) 8 1.6.1 超級電容器 (Supercapacitor) 9 1.6.2 電雙層超級電容器構造及工作原理 10 1.7 電雙層結構 (Electric Double Layer) 12 1.7.1 Helmholtz Model 13 1.7.2 Gouy-Chapman Model 13 1.7.3 Stern Model 14 第二章 實驗步驟及材料鑑定 15 2.1 實驗藥品 15 2.2 濕式活化法 17 2.3 浸潤活化法 18 2.4 染料飽和吸附量測試 19 2.5 染料吸附動力學測試 20 2.6 鈕釦式電容之製作 21 2.6.1碳電極之製作 21 2.6.2 鈕扣式電容組裝 22 2.7 染料吸附性能分析 23 2.7.1 吸附量 (Adsorption Capacity) 23 2.7.2 移除效率 (Removal Efficiency) 24 2.8 吸附熱力學 (Adsorption Thermodynamics) 25 2.8.1 Langmuir等溫吸附模型 25 2.8.2 Freundlich等溫吸附模型 26 2.9 吸附動力學 (Adsorption Kinetics) 27 2.9.1 偽一級化學動力學模型 (Pseudo-First-Order Model) 27 2.9.2 偽二級化學動力學模型 (Pseudo-Second-Order Model) 28 2.9.3 顆粒內擴散模型 (Intraparticle diffusion model) 28 2.10 二極式超級電容檢測 31 2.10.1 循環伏安法 (Cyclic Voltammetry) 31 2.10.2 定電流充放電 (Galvanostatic Charge-Discharge) 38 2.10.3 電化學阻抗頻譜 (Electrochemical Impedance Spectroscopy) 39 2.11 儀器鑑定 45 2.11.1 氮氣等溫吸附-脫附儀 (Nitrogen Adsorption-Desorption Isotherm) 45 2.11.2 熱重分析儀 (Thermal Gravimetric Analysis, TGA) 54 2.11.3 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 55 2.11.4 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 56 2.11.5 元素分析儀 (Elemental Analyzer, EA) 57 2.11.6 拉曼光譜儀 (Raman Spectrometer) 57 2.11.7 紫外光/可見光光譜儀 (UV-Vis Spectrophotometer) 59 第三章 多重孔洞碳材之合成 60 3.1 研究動機與目的 60 3.2 溼式活化法製備多重孔洞碳材之概要 61 3.3 活化劑與模板對多重孔洞碳材製備的影響 63 3.4 溼式活化法合成多重孔洞碳材之活化溫度探討 68 3.5 不同農業廢棄碳材料活化之比較 71 3.6 浸潤法製備多重孔洞碳材之概要 72 3.7 浸潤法合成多重孔洞碳材之碳化溫度探討 73 3.8 浸潤液濃度對多重孔洞碳材製備的影響 75 第四章 多重孔洞碳材應用於染料吸附 77 4.1 研究動機與目的 77 4.2 染料吸附實驗之概要 78 4.3 比較溼式活化法與浸潤法合成之碳材吸附性能表現 79 4.3.1 吸附熱力學 (Adsorption Thermodynamics) 79 4.3.2 吸附動力學 (Adsorption Kinetics) 83 第五章 多重孔洞碳材應用於超級電容器 87 5.1 研究動機與目的 87 5.2 多重孔洞碳材超級電容器 88 5.2.1 溼式活化法之孔洞碳材 92 5.2.2 浸潤法活化之孔洞材料 98 5.3 超級電容器之循環壽命 105 第六章 結論 108 參考文獻 110

    1 Zhao, H. Q. et al. Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Lett. 11, 17, doi:10.1007/s40820-019-0255-3 (2019).
    2 Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87, 1051-1069, doi:10.1515/pac-2014-1117 (2015).
    3 Heidarinejad, Z. et al. Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18, 393-415, doi:10.1007/s10311-019-00955-0 (2020).
    4 Tso, C. Y. & Chao, C. Y. H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int. J. Refrig.-Rev. Int. Froid 35, 1626-1638, doi:10.1016/j.ijrefrig.2012.05.007 (2012).
    5 Razvigorova, M., Budinova, T., Petrov, N. & Minkova, V. Purification of water by activated carbons from apricot stones, lignites and anthracite. Water Res. 32, 2135-2139, doi:10.1016/s0043-1354(97)00446-6 (1998).
    6 Ghasemi, M. et al. Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrog. Energy 36, 13746-13752, doi:10.1016/j.ijhydene.2011.07.118 (2011).
    7 Poonam, Sharma, K., Arora, A. & Tripathi, S. K. Review of supercapacitors: Materials and devices. J. Energy Storage 21, 801-825, doi:10.1016/j.est.2019.01.010 (2019).
    8 Kubota, M., Hata, A. & Matsuda, H. Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating. Carbon 47, 2805-2811, doi:10.1016/j.carbon.2009.06.024 (2009).
    9 Knox, J. H., Kaur, B. & Millward, G. R. STRUCTURE AND PERFORMANCE OF POROUS GRAPHITIC CARBON IN LIQUID-CHROMATOGRAPHY. Journal of Chromatography 352, 3-25, doi:10.1016/s0021-9673(01)83368-9 (1986).
    10 Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743-7746, doi:10.1021/jp991673a (1999).
    11 Han, S. J. & Hyeon, T. Simple silica-particle template synthesis of mesoporous carbons. Chem. Commun., 1955-1956, doi:10.1039/a905848f (1999).
    12 Sierra-Salazar, A. F. et al. in Studies in Surface Science and Catalysis Vol. 178 (eds Stefania Albonetti, Siglinda Perathoner, & Elsje Alessandra Quadrelli) 377-397 (Elsevier, 2019).
    13 Tanaka, S., Nishiyama, N., Egashira, Y. & Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite. Chem. Commun., 2125-2127 (2005).
    14 Jiao, J., Xiang, Y., Cao, J. & Xia, Y. Worm-hole structured mesoporous carbon monoliths synthesized with amphiphilic triblock copolymer. Journal of Porous Materials 23, 1431-1438 (2016).
    15 Laušević, Z. & Marinković, S. Mechanical properties and chemistry of carbonization of phenol formaldehyde resin. Carbon 24, 575-580 (1986).
    16 Yi, H., Nakabayashi, K., Yoon, S. H. & Miyawaki, J. Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon 183, 735-742, doi:10.1016/j.carbon.2021.07.061 (2021).
    17 Wang, L. J. et al. Adjusting the Porosity of Coal-Based Activated Carbons Based on a Catalytic Physical Activation Process for Gas and Liquid Adsorption. Energy & Fuels 32, 1255-1264, doi:10.1021/acs.energyfuels.7b03211 (2018).
    18 Ahmadpour, A. & Do, D. D. The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471-479, doi:10.1016/0008-6223(95)00204-9 (1996).
    19 Budinova, T. et al. Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel processing technology 87, 899-905 (2006).
    20 Jawad, A. H., Rashid, R. A., Ishak, M. A. M. & Wilson, L. D. Adsorption of methylene blue onto activated carbon developed from biomass waste by H2SO4 activation: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment 57, 25194-25206 (2016).
    21 Khalil, H. et al. Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization. Journal of Biobased Materials and Bioenergy 7, 708-714 (2013).
    22 Caturla, F., Molina-Sabio, M. & Rodriguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon 29, 999-1007 (1991).
    23 Corda, N. C. & Kini, M. S. in MATEC Web of Conferences. 02022 (EDP Sciences).
    24 Béguin, F., Presser, V., Balducci, A. & Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Advanced materials 26, 2219-2251 (2014).
    25 Jain, A. et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific reports 3, 1-6 (2013).
    26 Plaza, M., García, S., Rubiera, F., Pis, J. & Pevida, C. Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal 163, 41-47 (2010).
    27 Jouanneau, S. et al. Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 49, 62-82 (2014).
    28 Qu, W. et al. Effect of properties of activated carbon on malachite green adsorption. Fuel 249, 45-53 (2019).
    29 Mohammadi, N., Khani, H., Gupta, V. K., Amereh, E. & Agarwal, S. Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. Journal of colloid and interface science 362, 457-462 (2011).
    30 Hameed, B., Din, A. M. & Ahmad, A. Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of hazardous materials 141, 819-825 (2007).
    31 Marom, R., Amalraj, S. F., Leifer, N., Jacob, D. & Aurbach, D. A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 21, 9938-9954 (2011).
    32 Sudhakar, R. & Krishnappa, M. in Mesoporous Materials-Properties and Applications (IntechOpen, 2019).
    33 Herrera, V. I. et al. Optimal energy management and sizing of a battery--supercapacitor-based light rail vehicle with a multiobjective approach. IEEE Transactions on Industry Applications 52, 3367-3377 (2016).
    34 Mir, L., Etxeberria-Otadui, I., de Arenaza, I. P., Sarasola, I. & Nieva, T. in 2009 IEEE Energy Conversion Congress and Exposition. 1632-1639 (IEEE).
    35 González, A., Goikolea, E., Barrena, J. A. & Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and sustainable energy reviews 58, 1189-1206 (2016).
    36 Weber Jr, W. J. & Morris, J. C. Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division 89, 31-59 (1963).
    37 Simonin, J. P. & Boute, J. INTRAPARTICLE DIFFUSION-ADSORPTION MODEL TO DESCRIBE LIQUID/SOLID ADSORPTION KINETICS. Revista Mexicana De Ingenieria Quimica 15, 161-173 (2016).
    38 Wu, F. C., Tseng, R. L. & Juang, R. S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical Engineering Journal 153, 1-8, doi:10.1016/j.cej.2009.04.042 (2009).
    39 Jiang, Y. & Liu, J. Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials 2, 30-37 (2019).
    40 Qu, D. & Shi, H. Studies of activated carbons used in double-layer capacitors. Journal of Power Sources 74, 99-107 (1998).
    41 Streeter, I., Wildgoose, G. G., Shao, L. & Compton, R. G. Cyclic voltammetry on electrode surfaces covered with porous layers: an analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes. Sensors and Actuators B: Chemical 133, 462-466 (2008).
    42 Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. The Journal of Physical Chemistry C 111, 14925-14931 (2007).
    43 Mathis, T. S. et al. Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. advanced energy materials 9, 1902007 (2019).
    44 Taberna, P. L., Simon, P. & Fauvarque, J. F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of the Electrochemical Society 150, A292-A300, doi:10.1149/1.1543948 (2003).
    45 Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society 130, 2730-+, doi:10.1021/ja7106178 (2008).
    46 Nguyen, T. Q. & Breitkopf, C. Determination of Diffusion Coefficients Using Impedance Spectroscopy Data. Journal of the Electrochemical Society 165, E826-E831, doi:10.1149/2.1151814jes (2018).
    47 Sing, K. The use of nitrogen adsorption for the characterisation of porous materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 187, 3-9 (2001).
    48 Lozano-Castelló, D., Cazorla-Amoros, D., Linares-Solano, A. & Quinn, D. Micropore size distributions of activated carbons and carbon molecular sieves assessed by high-pressure methane and carbon dioxide adsorption isotherms. The Journal of Physical Chemistry B 106, 9372-9379 (2002).
    49 Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60, 309-319, doi:10.1021/ja01269a023 (1938).
    50 Lippens, B. C. & De Boer, J. Studies on pore systems in catalysts: V. The t method. Journal of Catalysis 4, 319-323 (1965).
    51 Leofanti, G., Padovan, M., Tozzola, G. & Venturelli, B. Surface area and pore texture of catalysts. Catalysis Today 41, 207-219, doi:10.1016/s0920-5861(98)00050-9 (1998).
    52 Joyner, L. G., Barrett, E. P. & Skold, R. THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .2. COMPARISON BETWEEN NITROGEN ISOTHERM AND MERCURY POROSIMETER METHODS. Journal of the American Chemical Society 73, 3155-3158, doi:10.1021/ja01151a046 (1951).
    53 Jagiello, J. & Olivier, J. P. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70-80 (2013).
    54 Inkson, B. J. in Materials characterization using nondestructive evaluation (NDE) methods 17-43 (Elsevier, 2016).
    55 Raman, C. V. & Krishnan, K. S. A new type of secondary radiation. Nature 121, 501-502 (1928).
    56 McGregor, H., Wang, W., Short, M. & Zeng, H. Clinical utility of Raman spectroscopy: current applications and ongoing developments. Adv. Health Care Technol. 2, 13-29 (2016).
    57 Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Physical review letters 97, 187401 (2006).
    58 Przepiórski, J., Skrodzewicz, M. & Morawski, A. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science 225, 235-242 (2004).
    59 Li, B., Hu, J., Xiong, H. & Xiao, Y. Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism. ACS omega 5, 9398-9407 (2020).
    60 Sulaiman, M., Ismail, M. & Jusoh, A. Oil-palm shell activated carbon production using CO2 emission from CaCO3 calcination. Journal of Sustainability Science and Management 8, 150-160 (2013).
    61 Wang, J. & Kaskel, S. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry 22, 23710-23725 (2012).
    62 Hayashi, J. i., Horikawa, T., Takeda, I., Muroyama, K. & Ani, F. N. Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon 40, 2381-2386 (2002).
    63 Liu, G.-W., Chen, T.-Y., Chung, C.-H., Lin, H.-P. & Hsu, C.-H. Hierarchical micro/mesoporous carbons synthesized with a ZnO template and petroleum pitch via a solvent-free process for a high-performance supercapacitor. ACS omega 2, 2106-2113 (2017).
    64 Lozano-Castello, D., Calo, J., Cazorla-Amoros, D. & Linares-Solano, A. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 45, 2529-2536 (2007).
    65 Gratuito, M., Panyathanmaporn, T., Chumnanklang, R.-A., Sirinuntawittaya, N. & Dutta, A. Production of activated carbon from coconut shell: Optimization using response surface methodology. Bioresource technology 99, 4887-4895 (2008).
    66 Daud, W. M. A. W. & Ali, W. S. W. Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource technology 93, 63-69 (2004).
    67 Daud, W. M. A. W., Ali, W. S. W. & Sulaiman, M. Z. The effects of carbonization temperature on pore development in palm-shell-based activated carbon. Carbon 38, 1925-1932 (2000).
    68 Li, Y. W. et al. Low-Temperature Catalytic Graphitization to Enhance Na-Ion Transportation in Carbon Electrodes. Acs Applied Materials & Interfaces 11, 24164-24171, doi:10.1021/acsami.9b07206 (2019).
    69 Aymen, M., Sami, S., Ahmed, S., Fethi, G. & Abdellatif, B. M. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide. Journal of physics D: applied physics 46, 335103 (2013).
    70 Ajmal, A., Majeed, I., Malik, R. N., Idriss, H. & Nadeem, M. A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. Rsc Advances 4, 37003-37026 (2014).
    71 AbdulRazak, A. A. & Rohani, S. Sodium dodecyl sulfate-modified Fe2O3/molecular sieves for removal of rhodamine B dyes. Advances in Materials Science and Engineering 2018 (2018).
    72 Abd Rashid, R., Jawad, A. H., Azlan, M., Ishak, M. & Kasim, N. FeCl3-activated carbon developed from coconut leaves: characterization and application for methylene blue removal. Sains Malaysiana 47, 603-610 (2018).
    73 Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A. & Fabregat, A. Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. Journal of environmental management 102, 148-164 (2012).
    74 Foo, K. & Hameed, B. H. An overview of dye removal via activated carbon adsorption process. Desalination and Water Treatment 19, 255-274 (2010).
    75 Gomez, V., Larrechi, M. & Callao, M. Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69, 1151-1158 (2007).
    76 Hasanzadeh, M., Simchi, A. & Far, H. S. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. Journal of Industrial and Engineering Chemistry 81, 405-414 (2020).
    77 Kannan, N. & Sundaram, M. M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and pigments 51, 25-40 (2001).
    78 Martin, M. J., Artola, A., Balaguer, M. D. & Rigola, M. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal 94, 231-239 (2003).
    79 Tsai, W. et al. Adsorption of acid dye onto activated carbons prepared from agricultural waste bagasse by ZnCl2 activation. Chemosphere 45, 51-58 (2001).
    80 Namasivayam, C. & Kavitha, D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and pigments 54, 47-58 (2002).
    81 Yao, Y., Bing, H., Feifei, X. & Xiaofeng, C. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. Chemical Engineering Journal 170, 82-89 (2011).
    82 Bird, L., Wüstenhagen, R. & Aabakken, J. A review of international green power markets: recent experience, trends, and market drivers. Renewable and Sustainable Energy Reviews 6, 513-536 (2002).
    83 Zubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 89, 292-308 (2018).
    84 Carter, R., Cruden, A. & Hall, P. J. Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle. IEEE Transactions on Vehicular Technology 61, 1526-1533 (2012).
    85 Mensah-Darkwa, K., Zequine, C., Kahol, P. K. & Gupta, R. K. Supercapacitor energy storage device using biowastes: A sustainable approach to green energy. Sustainability 11, 414 (2019).
    86 Zhu, Z. et al. Effects of various binders on supercapacitor performances. Int. J. Electrochem. Sci 11, 8270-8279 (2016).
    87 Hou, M., Sun, K., Deng, X. L., Xiao, F. L. & Yang, H. Effect of removing potassium ions from activated carbon on its electrochemical performance for supercapacitors. Rsc Advances 5, 74664-74670, doi:10.1039/c5ra10092e (2015).
    88 Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. Journal of Physical Chemistry C 111, 14925-14931, doi:10.1021/jp074464w (2007).
    89 Vukajlović, N., Milićević, D., Dumnić, B. & Popadić, B. Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage. J. Energy Storage 31, 101603 (2020).

    下載圖示 校內:2025-07-05公開
    校外:2025-07-05公開
    QR CODE