簡易檢索 / 詳目顯示

研究生: 陳彥志
Chen, Yen-Chih
論文名稱: 一維金屬硫化物奈米結構及鋅與氧化鋅共軸奈米線之成長分析
Growth and Characterization of the 1D metal sulfide nanostructures and Zn-ZnO core-shell nanocables
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 124
中文關鍵詞: 奈米結構金屬硫化物硫化鋅硫化亞銅鋅與氧化鋅
外文關鍵詞: nanostructure, metal sulfide, ZnS, Cu2S, Zn-ZnO
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討金屬硫化物(硫化鋅及硫化亞銅)一維奈米結構及鋅與氧化鋅共軸奈米線的成長及物理性質之研究。利用掃描式電子顯微鏡(SEM)觀察一維奈米結構的表面型態。而利用穿透式電子顯微鏡(TEM)探討奈米材料之微結構與成長機制。利用光激發光譜(PL)、陰極激發光譜(CL)及吸收光譜來進行光學性質的研究。同時利用物理性質量測系統(PPMS)量測單根奈米線之電性傳導行為。
    本論文依研究主題可分為四個部分。首先利用矽及氮化鎵做基板,進行簡單的熱揮發沉積法可以成長出未摻雜及摻雜鎵之硫化鋅奈米線。未摻雜之硫化鋅奈米線成直條狀,而摻雜鎵之硫化鋅奈米線像是六角片狀堆疊起來的結構。而摻雜鎵之所以會長成六角片狀,則是由於摻雜鎵使硫化鋅的表面能產生變化,使奈米線傾向往側向成長。
    第二部分,摻雜鎵之硫化鋅奈米線顯示了缺陷能階發光而取代了近能隙發光,而在電性傳導方面,摻雜鎵的硫化鋅奈米線則表現了極低的電阻率,並且在50K出現金屬半導體轉換的現象,最後使用亞甲基藍溶液所進行之光催化反應則顯示摻雜鎵的硫化鋅有著良好的光催化性質,推測是因為其特殊的表面型態造成表面積變大的關係。
    第三部分,吾人利用簡單的化學氣相沉積法成功的成長出硫化亞銅立方晶奈米線,而奈米線成長方向是[211]且頂端有連接著氧化亞銅的顆粒,而陰極發光峰位於580nm,有可能是尺寸造成的量子侷限效應和氧化亞銅之近能隙發光,另外也有得到硫化亞銅的多面體,並發現其為超晶格所組合而成,而量測吸收光譜可得其能隙大約在1.6eV。
    最後一個部分,a軸方向成長的鋅與氧化鋅奈米線可以利用直接熱揮發沉積的方式得到,而藉由添加催化劑錫,則可成長出c軸取向之鋅與氧化鋅奈米線,而兩種方向的奈米線發光光譜對照氧化鋅奈米管則都是藍移,此原因應該是由於鋅與氧化鋅界面殘留的應變所造成的,而變溫光譜則顯示兩者主要發光的位置不同,這有可能是因為不同成長平面所造成的。

    This dissertation explores the growth and physical properties of metal sulfide (ZnS and Cu2S) nanostructures and Zn-ZnO core-shell nanocables. The surface morphologies of the samples were analyzed by scanning electron microscopy(SEM). The microstructures were characterized by transmission electron microscopy(TEM) to study the growth mechanisms. The optical properties were measured by photoluminescence(PL), cathodoluminescence(CL) and absorption spectra. The electron transport behaviors of single nanowires were investigated by physical properties measurement system(PPMS).
    The main contact of this dissertation can be divided into four parts. First, a new process for growing single crystalline undoped and Ga-doped ZnS nanowires with simple evaporation and condensation procedures on Si and GaN, respectively, is introduced. The undoped ZnS nanowires exhibit an ordinary straight morphology, whereas the Ga-doped nanowires are composed of aligned hexagonal platelets. ZnS nanowires tend to grow in the lateral direction faster than axial direction due to the Ga dopant which is diffused into the ZnS lattices.
    In the second part, cathodoluminescence(CL) results show that the dominant emission switches from near-band-edge emissions for the undoped ZnS nanowires to defect emissions for Ga-doped ZnS nanowires. The current-voltage results of the Ga-doped ZnS nanowires indicate low resistivity and exhibit the metal-semiconductor transition behavior at 50 K, in contrast to the semiconductor behavior of the undoped ZnS nanowires. By photocatalytic activity measurement with the methylene blue(MB) solution, we also demonstrate the excellent photocatalytic activity of Ga-doped ZnS nanowires which possess large surface area due to the unique morphology.
    In the third part, single crystalline Cu2S nanowires in cubic phase were first successfully synthesized by using simple thermal chemical vapor deposition without catalysts purposely. The as-deposited Cu2S nanowires were grown along the [211] direction with Cu2O particles on the tips. Cathodoluminescence spectroscopy reveals an orange emission peak located at 580 nm, which may be originated from the near band edge emission of Cu2O particles or blue shift caused by the quantum confinement effect due to quite small size of the Cu2S nanowire. On the other hand, the Cu2S particles can also be obtained in our system.The Cu2S particles are consisted of unique superlattices and the band gap of the particles is about 1.6eV by studying the absorption spectrum.
    In the last part, highly-aligned Zn-ZnO nanocables with growth directions along the [11 0] (a-plane) and [0001] (c-plane) were successfully synthesized via one-step thermal evaporation and condensation without and with Sn catalysts, respectively. Photoluminescence measurements show that the near-band-edge emissions of both types of Zn-ZnO nanocables are blue shifted compared to those of ZnO nanotubes without Zn cores due to compressive stress. Temperature-dependent PL spectra reveal that the dominant emissions at low temperature involve excitonic transitions in addition to blue shift, which are clearly related to the different growth planes.

    總目錄 摘要……………………………………………………………………………………I Abstract………………………………………………………………………………III 致謝…………………………………………………………………………………V 總目錄………………………………………………………………………………Ⅵ 圖目錄………………………………………………………………………………Ⅹ 第一章 緒論 1-1前言………………………………………………………………………………1 1-2研究動機與論文架構……………………………………………………………3 1-2.1 研究動機…………………………………………………………………3 1-2.2 論文架構…………………………………………………………………4 第二章 理論基礎與文獻回顧 2-1 硫化鋅一維奈米結構……………………………………………………………5 2.1.1 硫化鋅的基礎性質………………………………………………………5 2-1.2 一維硫化鋅奈米結構製程方法…………………………………………7 2-1.3 摻混雜質的硫化鋅一維奈米結構………………………………………13 2-2 硫化亞銅一維奈米結構………………………………………………………15 2-2.1 硫化亞銅的基礎性質……………………………………………………15 2-2.2 硫化亞銅一維奈米結構製程方法………………………………………15 2-3 鋅與氧化鋅核殼(core-shell)異質奈米結構……………………………………21 2-3.1 異質奈米結構之簡介……………………………………………………21 2-3.2 鋅與氧化鋅核殼(core-shell)異質奈米結構之製程方法………………22 2-4 螢光光譜(Photoluminescence, PL) ……………………………………………25 2-4.1 理論基礎…………………………………………………………………25 2-4.2 PL光譜儀架構…………………………………………………………26 2-5 陰極激發光譜(Cathodoluminescence) …………………………………………29 2-6 光催化性質(photocatalytic activity) …………………………………………32 2-7半導體材料載子傳導機制……………………………………………………35 2-7.1不同溫度下半導體載子傳導行為………………………………………37 2-7.2 金屬-絕緣體轉換(Metal-Insulator Transition)…………………………41 2-7.3 弱局域現象(Weak localization) …………………………………………43 第三章 實驗步驟與方法 3-1 奈米結構之成長………………………………………………………………44 3-1.1 硫化鋅奈米結構之成長…………………………………………………44 3-1.2 化學氣相沉積法(chemical vapor deposition,CVD)簡介………………46 3-1.3 硫化亞銅奈米結構之成長………………………………………………47 3-1.4 鋅與氧化鋅共軸奈米線之成長…………………………………………47 3-2 結構及成分分析………………………………………………………………49 3-2.1 掃描式電子顯微鏡(scanning electron microscopy) ……………………49 3-2.2 穿透式電子顯微鏡(Transmission Electron Microscopy,HRTEM) ……52 3-2.3 X光光電子能譜儀(X-ray Photoelectron Spectroscopy) …………………54 3-2.4 X光繞射分析儀(X-ray Diffraction)……………………………………54 3-3 光學性質分析…………………………………………………………………55 3-3.1 微觀拉曼光譜量測系統 (micro-Raman Spectrometer, μ-Raman) ……55 3-3.2 光致螢光激發光譜 (Photoluminescence, PL) …………………………56 3-3.3 光催化反應的量測………………………………………………………57 3-3.4紫外光/可見光吸收光譜儀 (UV/Visible absorption spectrumeter) ……57 3-4 電性分析………………………………………………………………………58 3-4.1以黃光微影蝕刻製程製作電極…………………………………………58 3-4.2 以雙粒子束聚焦式離子束製作電極……………………………………58 3-4.3 電性量測分析系統………………………………………………………60 第四章 結果與討論 4-1 硫化鋅一維奈米結構的成長及結構分析……………………………………61 4-1.1 未摻雜之硫化鋅一維奈米線的成長與結構分析………………………61 4-1.2 摻雜鎵之硫化鋅一維奈米結構的成長與結構分析……………………62 4-1.3 硫化鋅奈米線的成長機制探討…………………………………………63 4-1.4 結論………………………………………………………………………65 4-2 硫化鋅一維奈米結構的光電性質探討………………………………………75 4-2.1 硫化鋅一維奈米結構的光學性質研究…………………………………75 4-2.2硫化鋅一維奈米結構的光催化性質研究………………………………76 4-2.3 硫化鋅一維奈米結構之電性研究………………………………………77 4-2.4 結論………………………………………………………………………79 4-3 硫化銅之奈米結構的成長與分析……………………………………………87 4-3.1硫化亞銅之奈米線的成長與分析………………………………………87 4-3.2 硫化亞銅之多面體成長與分析…………………………………………89 4-3.3 硫化亞銅之光學性質研究………………………………………………90 4-3.4 結論………………………………………………………………………91 4-4 鋅與氧化鋅共軸奈米結構之成長與分析……………………………………102 4-4.1 鋅與氧化鋅共軸奈米線的成長與結構分析…………………………102 4-4.2 鋅與氧化鋅共軸奈米線的光學性質研究……………………………104 4-4.3 結論……………………………………………………………………105 第五章 結論 ……………………………………………………………………114 參考文獻……………………………………………………………………………116 著作…………………………………………………………………………………123

    [1] S. S. William M. Yen, Hajime Yamamoto, Phosphor handbook, CRC Press/Taylor and Francis, 2007.
    [2] L. D. Sun, C. H. Liu, C. S. Liao, C. H. Yan, J Mater Chem 1999, 9, 1655.
    [3] Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, Adv Mater 2004, 16, 831.
    [4] C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, J Am Chem Soc 2003, 125, 11498.
    [5] M. Y. Lu, J. H. Song, M. P. Lu, C. Y. Lee, L. J. Chen, Z. L. Wang, Acs Nano 2009, 3, 357.
    [6] W. Chen, Z. G. Wang, Z. J. Lin, L. Y. Lin, J Appl Phys 1997, 82, 3111.
    [7] Z. W. Wang, L. L. Daemen, Y. S. Zhao, C. S. Zha, R. T. Downs, X. D. Wang, Z. L. Wang, R. J. Hemley, Nature Materials 2005, 4, 922.
    [8] X. D. Wang, P. X. Gao, J. Li, C. J. Summers, Z. L. Wang, Adv Mater 2002, 14, 1732.
    [9] L. W. Yin, Y. Bando, J. H. Zhan, M. S. Li, D. Golberg, Adv Mater 2005, 17, 1972.
    [10] T. Thongtem, C. Pilapong, S. Thongtem, J Alloy Compd 2010, 496, L29.
    [11] L. Z. Cao, H. Jiang, H. Song, Z. M. Li, G. Q. Miao, J Alloy Compd 2010, 489, 562.
    [12] Z. Y. Ma, D. Dosev, M. Nichkova, R. K. Dumas, S. J. Gee, B. D. Hammock, K. Liu, I. M. Kennedy, J Magn Magn Mater 2009, 321, 1368.
    [13] Y. Lu, C. L. Yan, S. Y. Gao, Appl Surf Sci 2009, 255, 6061.
    [14] H. B. Zeng, P. S. Liu, W. P. Cai, X. L. Cao, S. K. Yang, Cryst Growth Des 2007, 7, 1092.
    [15] X. Y. Zhang, J. Y. Dai, C. H. Lam, H. T. Wang, P. A. Webley, Q. Li, H. C. Ong, Acta Mater 2007, 55, 5039.
    [16] W. S. Khan, C. B. Cao, Z. Chen, G. Nabi, Mater Chem Phys 2010, 124, 493.
    [17] P. Harrison, Quantum wells, wires and dots :theoretical and computational physics of semiconductor nanostructures, Wiley, Chichester 2009.
    [18] X. S. Fang, T. Y. Zhai, U. K. Gautam, L. A. Li, L. M. Wu, B. Yoshio, D. Golberg, Prog Mater Sci 2011, 56, 175.
    [19] K. Sooklal, B. S. Cullum, S. M. Angel, C. J. Murphy, Journal of Physical Chemistry 1996, 100, 4551.
    [20] S. Nakamura, Y. Yamada, T. Taguchi, J. Cryst. Growth 2000, 214, 1091.
    [21] 蔡有仁, 楊先仁, 遠東學報 2003 中華民國九十二年六月出版, 20, 405.
    [22] Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Science 2001, 293, 1289.
    [23] S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Nature 1998, 394, 52.
    [24] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, H. J. Dai, Science 2000, 287, 622.
    [25] R. S. Wagner, W. C. Ellis, Applied Physics Letters 1964, 4.
    [26] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, Chem Phys Lett 2002, 357, 314.
    [27] B. D. Liu, Y. S. Bando, M. S. Wang, C. Y. Zhi, X. S. Fang, C. C. Tang, M. Mitome, D. Golberg, J Appl Phys 2009, 106.
    [28] S. Kar, S. Biswas, S. Chaudhuri, Nanotechnology 2005, 16, 737.
    [29] M. Wang, G. T. Fei, X. G. Zhu, B. Wu, M. G. Kong, L. De Zhang, J Phys Chem C 2009, 113, 4335.
    [30] J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, X. M. Meng, Appl Phys Lett 2004, 85, 2361.
    [31] J. Zhang, Y. D. Yang, F. H. Jiang, J. P. Li, B. L. Xu, X. C. Wang, S. M. Wang, Nanotechnology 2006, 17, 2695.
    [32] X. H. Zhang, Y. Zhang, Y. P. Song, Z. Wang, D. P. Yu, Physica E 2005, 28, 1.
    [33] X. S. Fang, U. K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi, D. Golberg, J Phys Chem C 2008, 112, 4735.
    [34] D. F. Moore, Y. Ding, Z. L. Wang, J Am Chem Soc 2004, 126, 14372.
    [35] X. Wu, P. Jiang, Y. Ding, W. Cai, S. S. Xie, Z. L. Wang, Adv. Mater. 2007, 19, 2319.
    [36] X. S. Fang, Y. Bando, G. Z. Shen, C. H. Ye, U. K. Gautam, P. Costa, C. Y. Zhi, C. C. Tang, D. Golberg, Adv. Mater. 2007, 19, 2593.
    [37] H. Y. Lu, S. Y. Chu, C. C. Chang, J. Cryst. Growth 2005, 280, 173.
    [38] Y. G. Zhang, F. Lu, Z. Y. Wang, H. X. Wang, M. G. Kong, X. G. Zhu, L. D. Zhang, Cryst Growth Des 2007, 7, 1459.
    [39] Z. G. Chen, J. Zou, G. Liu, X. D. Yao, F. Li, X. L. Yuan, T. Sekiguchi, G. Q. Lu, H. M. Cheng, Adv Funct Mater 2008, 18, 3063.
    [40] X. S. Fang, Y. Bando, M. Y. Liao, U. K. Gautam, C. Y. Zhi, B. Dierre, B. D. Liu, T. Y. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, Adv Mater 2009, 21, 2034.
    [41] X. S. Fang, Y. Bando, G. Z. Shen, C. H. Ye, U. K. Gautam, P. M. F. J. Costa, C. Y. Zhi, C. C. Tang, D. Golberg, Adv Mater 2007, 19, 2593.
    [42] T. H. Wang, Y. G. Liu, P. Feng, X. Y. Xue, S. L. Shi, X. Q. Fu, C. Wang, Y. G. Wang, Appl Phys Lett 2007, 90, 042109.
    [43] J. F. Gong, S. G. Yang, H. B. Huang, J. Duan, H. W. Liu, X. N. Zhao, R. Zhang, Y. W. Du, Small 2006, 2, 732.
    [44] G. Z. Shen, Y. Bando, J. Q. Hu, D. Golberg, Appl Phys Lett 2007, 90, 123101.
    [45] G. Z. Shen, Y. Bando, D. Golberg, Appl Phys Lett 2006, 88, 123107.
    [46] M. Law, J. Goldberger, P. D. Yang, Annu Rev Mater Res 2004, 34, 83.
    [47] Y. C. Li, X. H. Li, C. H. Yang, Y. F. Li, J Phys Chem B 2004, 108, 16002.
    [48] L. L. Chai, J. Du, S. L. Xiong, H. B. Li, Y. C. Zhu, Y. T. Qian, J Phys Chem C 2007, 111, 12658.
    [49] U. K. Gautam, Y. Bando, J. H. Zhan, P. M. F. J. Costa, X. S. Fang, D. Golberg, Adv Mater 2008, 20, 810.
    [50] M. Y. Lu, M. P. Lu, Y. A. Chung, M. J. Chen, Z. L. Wang, L. J. Chen, J Phys Chem C 2009, 113, 12878.
    [51] T. Kang, J. Sung, W. Shim, H. Moon, J. Cho, Y. Jo, W. Lee, B. Kim, J Phys Chem C 2009, 113, 5352.
    [52] G. D. Yuan, W. J. Zhang, W. F. Zhang, X. Fan, I. Bello, C. S. Lee, S. T. Lee, Appl Phys Lett 2008, 93, 213102.
    [53] D. J. C. a. D.E.Laughlin, Bulletin of Alloy Phase Diagrams 1983, 4.
    [54] R. W. Potter, Econ Geol 1977, 72, 1524.
    [55] J. N. Gray, R. Clarke, Phys Rev B 1986, 33, 2056.
    [56] P. Lukashev, W. R. L. Lambrecht, T. Kotani, M. van Schilfgaarde, Phys Rev B 2007, 76, 195202.
    [57] H. T. Evans, Z. Kristall. 1979, 150, 299.
    [58] P. A. Korzhavyi, I. A. Abrikosov, B. Johansson, Acta Mater 1999, 47, 1417.
    [59] B. J. Mulder, Phys Status Solidi A 1973, 15, 409.
    [60] L. Reijnen, B. Meester, A. Goossens, J. Schoonman, Mat Sci Eng C-Bio S 2002, 19, 311.
    [61] Y. Wu, C. Wadia, W. L. Ma, B. Sadtler, A. P. Alivisatos, Nano Lett 2008, 8, 2551.
    [62] S. H. Wang, S. H. Yang, Z. R. Dai, Z. L. Wang, Phys Chem Chem Phys 2001, 3, 3750.
    [63] I. Jen-La Plante, T. W. Zeid, P. D. Yang, T. Mokari, J Mater Chem 2010, 20, 6612.
    [64] H. T. Evans, Science 1979, 203, 356.
    [65] H. S. Kim, T. K. Sung, S. Y. Jang, Y. Myung, Y. J. Cho, C. W. Lee, J. Park, J. P. Ahn, J. G. Kim, Y. J. Kim, Crystengcomm 2011, 13, 2091.
    [66] B. J. Niu, L. L. Wu, X. T. Zhang, Crystengcomm 2010, 12, 3305.
    [67] D. L. Huang, L. L. Wu, X. T. Zhang, J Phys Chem C 2010, 114, 11783.
    [68] 羅左財, 呂光烈, in 週報, Vol. 1142, 中央研究院, 2007.
    [69] C. M. Lieber, Z. L. Wang, Mrs Bulletin 2007, 32, 99.
    [70] J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, C. M. Lieber, Nature 2006, 441, 489.
    [71] G. C. Liang, J. Xiang, N. Kharche, G. Klimeck, C. M. Lieber, M. Lundstrom, Nano Letters 2007, 7, 642.
    [72] L. Y. Li, Y. H. Cheng, X. G. Luo, H. Liu, G. H. Wen, R. K. Zheng, S. P. Ringer, Nanotechnology 2010, 21.
    [73] W. Y. Chen, R. C. Wang, C. P. Liu, Cryst Growth Des 2008, 8, 2248.
    [74] C. Y. Kuan, M. H. Hon, J. M. Chou, I. C. Leu, Cryst Growth Des 2009, 9, 813.
    [75] P. X. Gao, C. S. Lao, Y. Ding, Z. L. Wang, Adv Funct Mater 2006, 16, 53.
    [76] D. M. Tang, G. Liu, F. Li, J. Tan, C. Liu, G. Q. Lu, H. M. Cheng, J Phys Chem C 2009, 113, 11035.
    [77] 徐煥棠, Vol. 碩士論文, 私立中原大學, 2001.
    [78] R. P. S. Suri, J. Liu, D. W. Hand, J. C. Crittenden, D. L. Perram, M. E. Mullins, Water Environ Res 1993, 65, 665.
    [79] M. Kanemoto, T. Shiragami, C. J. Pac, S. Yanagida, J Phys Chem-Us 1992, 96, 3521.
    [80] M. Kanemoto, T. Shiragami, C. J. Pac, S. Yanagida, Chem Lett 1990, 931.
    [81] A. Koca, M. Sahin, Int J Hydrogen Energ 2002, 27, 363.
    [82] G. Horner, P. Johne, R. Kunneth, G. Twardzik, H. Roth, T. Clark, H. Kisch, Chem-Eur J 1999, 5, 208.
    [83] J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, C. L. Bai, Angew Chem Int Edit 2005, 44, 1269.
    [84] A. L. E. B.I. Shklovskii, Electronic Properties of Doped Semiconductors, Springer-Verlag, 1984.
    [85] H. P. Myers, Introductory Solid State Physics, Taylor & Francis, London 1997.
    [86] a. E. A. D. N. F. Mott, Electronic processes in non-crystalline materials, Clarendon Press, Oxford 1979.
    [87] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1990.
    [88] N. F. Mott., Metal-insulator transitions Taylor & Francis, London 1990.
    [89] V. Bhosle, A. Tiwari, J. Narayan, J Appl Phys 2006, 100, 033713.
    [90] O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, A. K. Pradhan, Appl Phys Lett 2007, 90, 252108.
    [91] A. K. Pradhan, L. Douglas, H. Mustafa, R. Mundle, D. Hunter, C. E. Bonner, Appl Phys Lett 2007, 90, 072108.
    [92] K. Lord, T. M. Williams, D. Hunter, K. Zhang, J. Dadson, A. K. Pradhan, Appl Phys Lett 2006, 88, 262105.
    [93] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, A. K. Pradhan, Semicond Sci Tech 2008, 23, 085019.
    [94] A. J. Chiquito, A. J. C. Lanfredi, R. F. M. de Oliveira, L. P. Pozzi, E. R. Leite, Nano Lett 2007, 7, 1439.
    [95] R. S. Thompson, D. D. Li, C. M. Witte, J. G. Lu, Nano Lett 2009, 9, 3991.
    [96] S. P. Chiu, Y. H. Lin, J. J. Lin, Nanotechnology 2009, 20, 015203.
    [97] N. M. Rao, G. Krishnaiah, S. Sambasivam, K. R. Reddy, D. R. Reddy, B. K. Reddy, C. N. Xu, J Alloy Compd 2009, 468, 360.
    [98] 蔡林宗, in 物理研究所, Vol. 碩士論文, 國立交通大學, 新竹 2010.
    [99] N. Giordano, W. Gilson, D. E. Prober, Phys Rev Lett 1979, 43, 725.
    [100] D. L. Smith., Thin-film deposition :principles and practice, McGraw-Hill, New York 1995.
    [101] 成功大學微奈米中心儀器使用手冊http://140.116.176.21/www/index.htm.
    [102] D. B. W. a. C. B. Carter, Transmission electron microscopy :a textbook for materials science, Plenum Press, New York 1996.
    [103] B. D. Cullity, S. R. Stock, Elements of x-ray diffraction, Prentice Hall, New Jersey 2001.
    [104] 中山大學物理系http://khvic.nsysu.edu.tw/khvic/JL/PPMS98.htm.
    [105] X. Y. Wang, Y. C. Zhu, H. Fan, M. F. Zhang, B. J. Xi, H. Z. Wang, Y. T. Qian, J Cryst Growth 2008, 310, 2525.
    [106] T. Y. Zhai, Z. J. Gu, H. B. Fu, Y. Ma, J. N. Yao, Cryst Growth Des 2007, 7, 1388.
    [107] Z. P. Li, B. B. Liu, X. L. Li, S. D. Yu, L. Wang, Y. Y. Hou, Y. G. Zou, M. G. Yao, Q. J. Li, B. Zou, T. Cui, G. T. Zou, J Phys-Condens Mat 2007, 19.
    [108] C. Sanz, C. Guillen, M. T. Gutierrez, J Phys D Appl Phys 2009, 42.
    [109] M. R. Lazell, P. O'Brien, D. J. Otway, J. H. Park, Chem Mater 1999, 11, 3430.
    [110] C. D. Tsai, C. T. Lee, J Appl Phys 2000, 87, 4230.
    [111] G. R. Li, D. L. Qu, L. Arurault, Y. X. Tong, J Phys Chem C 2009, 113, 1235.
    [112] Z. A. Munir, A. W. Searcy, J Chem Phys 1965, 42, 4223.
    [113] H. Z. Zhang, F. Huang, B. Gilbert, J. F. Banfield, J Phys Chem B 2003, 107, 13051.
    [114] K. Wright, J. D. Gale, Phys Rev B 2004, 70, 035211.
    [115] H. W. Choi, M. A. Rana, S. J. Chua, T. Osipowicz, J. S. Pan, Semicond Sci Tech 2002, 17, 1223.
    [116] H. Landolt, Börnstein, R, Numerical data and functional relationships in science and technology, Springer-Verlag, Berlin 1999.
    [117] W. G. Becker, A. J. Bard, J Phys Chem-Us 1983, 87, 4888.
    [118] W. H. Zhang, J. L. Shi, H. R. Chen, Z. L. Hua, D. S. Yan, Chem Mater 2001, 13, 648.
    [119] M. Y. Lu, H. C. Hsu, L. J. Chen, Advances in Science and Technology 2006, 51, 48.
    [120] T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, C. J. Summers, J Appl Phys 1997, 81, 2803.
    [121] Y. Z. Yoo, T. Chikyow, P. Ahmet, M. Kawasaki, T. Makino, Y. Segawa, H. Koinuma, Adv Mater 2001, 13, 1624.
    [122] D. Stichtenoth, D. Schwen, S. Muller, C. Borchers, C. Ronning, J Vac Sci Technol A 2006, 24, 1356.
    [123] Y. Kawakami, A. Sawada, K. Kurisu, Z. Kawazu, T. Taguchi, A. Hiraki, J Lumin 1988, 40-1, 147.
    [124] F. J. Manjon, M. Mollar, B. Mari, N. Garro, A. Cantarero, R. Lauck, M. Cardona, Solid State Commun 2005, 133, 253.
    [125] S. Iida, S. Suzuki, J Non-Cryst Solids 1983, 59-6, 633.
    [126] C. B. Thomas, H. S. Reehal, A. J. Warren, J. M. Gallego, Appl Phys Lett 1981, 38, 736.
    [127] H. P. Myers., Ed. Introductory solid state physics Taylor & Francis, London 1997.
    [128] J. M. Ziman., Electrons and phonons :the theory of transport phenomena in solids Oxford :Clarendon Press, 1960.
    [129] D. E. Beutler, N. Giordano, Phys Rev B 1988, 38, 8.
    [130] C. H. Kuo, Y. T. Chu, Y. F. Song, M. H. Huang, Adv Funct Mater 2011, 21, 792.
    [131] D. Mott, J. Yin, M. Engelhard, R. Loukrakpam, P. Chang, G. Miller, I. T. Bae, N. C. Das, C. M. Wang, J. Luo, C. J. Zhong, Chem Mater 2010, 22, 261.
    [132] X. Zhang, Y. G. Guo, W. M. Liu, Mater Lett 2009, 63, 982.
    [133] B. Balamurugan, B. R. Mehta, D. K. Avasthi, F. Singh, A. K. Arora, M. Rajalakshmi, G. Raghavan, A. K. Tyagi, S. M. Shivaprasad, J Appl Phys 2002, 92, 3304.
    [134] O. K. O. Knacke, K. Hesselmann, eds, Thermochemical properties of inorganic substances, Springer-Verlag, New York 1991.
    [135] G. M. Liu, T. Schulmeyer, J. Brotz, A. Klein, W. Jaegermann, Thin Solid Films 2003, 431, 477.
    [136] B. Balamurugan, B. R. Mehta, Thin Solid Films 2001, 396, 90.
    [137] L. Vitos, A. V. Ruban, H. L. Skriver, J. Kollar, Surf Sci 1998, 411, 186.
    [138] G. M. Arnstein, Bolsaiti.P, Armstron.Rw, Acta Crystall a-Crys 1972, A-28, 344.
    [139] p. u. t. d. o. t. A. I. H. Committee, ASM handbook,vol.3,Alloy phase diagrams, ASM International, 1990.
    [140] V. Y. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobsen, O. K. Semchinova, J Appl Phys 1997, 82, 5097.
    [141] J. Stiens, R. Vounckx, I. Veretennicoff, A. Voronko, G. Shkerdin, J Appl Phys 1997, 81, 1.
    [142] Y. S. Nam, S. W. Lee, K. S. Baek, S. K. Chang, J. H. Song, J. H. Song, S. K. Han, S. K. Hong, T. Yao, Appl Phys Lett 2008, 92, 201907.

    無法下載圖示 校內:2016-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE