簡易檢索 / 詳目顯示

研究生: 蘇薏涵
Su, Yi-Han
論文名稱: 高實用膠態電解質用於高性能電雙層電容之研發
Development of High Workability Gel Electrolytes for High Performance Double Layer Capacitors
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 電雙層電容器膠態高分子電解質電解液灌注介電常數耐燃性質寬溫度範圍
外文關鍵詞: Electric double layer capacitor, Gel polymer electrolyte, Electrolyte injection, Dielectric constant, Flammability, Temperature range
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膠態電解質(gel polymer electrolyte, GPE)由高分子為基礎、溶劑與電解質所組成,具有化學穩定、難燃和易於封裝等特點,並在廣泛溫度範圍下展現優異的特性。為了使電雙層電容器應用於在極端環境下及提昇性能表現,藉由開發膠態高分子電解質系統,提高電容器的儲能密度、輸出功率、操作溫度環境範圍、循環壽命及電容器應用時的耐燃強度,突破現階段電容元件的能量儲存極限及操作限制。
    本論文分為兩個主題: 1.具高儲能介電常數及低介電損耗之膠態電解質應用於電雙層電容器的研究;2.摻雜氧化石墨膜於高介電常數膠態電解質應用於寬工作溫度範圍之安全儲能電雙層電容器。
    第一部分,我們利用丙烯腈-丙烯酸甲酯共聚高分子poly(acrylonitrile-co-methyl acrylate) (PANMA)添加聚乙二醇poly(ethylene glycol) (PEG) (PANMA:EG)來提昇導離子度,並與1 M的TEABF4碳酸丙烯酯混合成GPE。此GPE與液態電解質(liquid electrolyte, LE)相比具有高導離子度(4.2 × 10-3 S cm-1 於25 °C)。PANMA:EG可以抑制ion-solvent混合物生成,並且有強解離子能力。且GPE擁有高介電係數及低介電損耗特性,應用在電雙層電容器時可以增加儲能能力,減少功率和能量的損耗。所以在GPE-EDLC的循環壽命表現優於LE-EDLC。GPE-EDLC在操作電壓2.7 V下達到能量密度 53 Wh kg-1,在功率100 kW kg-1時,比能量能展現出48 Wh kg-1。
    在第二部分中,我們探討添加氧化石墨烯(graphene oxide, GO)於膠態電解質(GPEG),發展耐燃性高且能夠在溫度範圍20 C到80 C間快速充放電高性能的電雙層電容器。GPEG在耐燃測試中,GO主要發揮形成炭化阻燃作用。GPEG中的GO不僅能促進counter-ion pairs和 solvent-ion clusters解離;且與LE相比下,GPEG具有較高導離子度也降低介電損耗。此GPEG-電雙層電容器也擁有優異的循環充放電次數和熱穩定性,並且可以在寬廣的溫度範圍操作以及GPEG-電雙層電容器彎曲可撓性高。此外,GPEG-電雙層電容器的製程不僅與現今生產產線相差不大,可以加速導入產線進行大量生產,而且還可提供更多不同儲能裝置發展的空間。

    This dissertation includes two parts: (1) The use of gel polymer electrolytes (GPEs) in electric double layer capacitors (EDLCs) and hierarchical pore carbon. (2) Gel polymer electrolytes (GPEs), comprising a graphene oxide (GO)-decorated polymer blend applied in a wide temperature range for EDLCs.
    In the first part, we analyze the postinjection gelated GPE, which can be synthesized by mixing a polymer blend of poly(acrylonitrile-co-methyl acrylate) and poly(ethylene glycol) (i.e., PANMA:EG) with a conventional liquid electrolyte (LE). The functionalities on the polymer chains facilitate the dissociation of ion pairs and suppress the formation of ion–solvent complexes; thus, the GPE has an ionic conductivity that is one order of magnitude higher than that of the LE. Under polarization for dielectric analysis, the GPE exhibits high storage permittivity and low loss permittivity because of its swift ion motion and polymeric dipole orientation. Owing to its superior permittivity performance, the resulting GPE-EDLC outperforms the LE-EDLC in terms of the ultimate capacitance, rate capability, and charge–discharge cycling stability. The postinjection gelation feature and outstanding permittivity characteristics of the PANMA:EG-based GPE indicate the suitability of this GPE in industrial-scale assembly lines and practical applications.
    The second part presents the synthesis of gel polymer electrolytes (GPEs), comprising a graphene oxide (GO)-decorated polymer blend of poly(acrylonitrile-co-methyl acrylate) and poly(ethylene glycol) integrated into a liquid electrolyte (LE), are developed. Under firing, the polymer entraps solvent molecules and the GO facilitates the charring of the GO-decorated GPE (GPEG), resulting in low flammability. GPEG as an electrolyte for electric double-layer capacitors (EDLCs) operated in a wide temperature range (from -20 to 80 °C). The GPEG–EDLC presents excellent performance at 20 °C due to the solvention cluster dissociation. Its stable performance at 80 °C is ascribable to the low dielectric loss, which minimizes the chemical damage to the system. Our study demonstrates the use of a GO-decorated dielectric polymer to address issues of safety and workability at extreme-temperatures.

    中文摘要 I Abstract III Acknowledgement V Contents VI List of Figures IX List of Tables XV List of Schemes XV Abbreviations and Symbols XVI Symbols XVII Chapter 1 Introduction 1 1-1 The Need for Energy Storage 1 1-2 Batteries 1 1-3 Supercapacitors 3 1-4 Supercapacitors with energy storage systems 4 1-5 Objectives of the present work 6 Chapter 2 Literature Review and Fundamental 7 2-1 Historical background 7 2-2 Types of Supercapacitors 10 2-2-1 Electric double layer capacitors (EDLCs) 10 2-2-2 Pseudocapacitors 13 2-2-3 Hybrid capacitors 14 2-3 Electrolytes 15 2-3-1 Liquid electrolytes 18 2-3-2 Gel polymer electrolytes (GPEs) 18 2-3-3 Solid electrolytes 19 2-3-4 Composite polymer electrolytes 19 Chapter 3 Experimental 21 3.1 Materials 21 3.2 Characterization of GPEs 21 3-2-1 Differential Scanning Calorimetry (DSC) 22 3-2-2 Thermogravimetric Analysis (TGA) 22 3-2-3 Dielectric properties 22 3-2-4 Cyclic voltammetry 23 3-2-5 Galvanostatic charge-discharge 25 3-2-6 Electrochemical impedance spectroscopy 26 Chapter 4 Postinjection Gelation of an Electrolyte with High Storage Permittivity and Low Loss Permittivity for Electrochemical Capacitors 29 4-1 Introduction 29 4-2 Experimental 30 4-2-1 Preparation of the electrolytes 30 4-2-2 Assembly of the EDLCs 31 4-2-3 Analysis of the electrolytes and EDLCs 31 4-3 Results and discussion 32 4-3-1 Electrolyte properties 44 4-3-2 EDLC performance 50 4-3-3 Advantages of the GPE in practical applications 51 4-4 Conclusions 53 Chapter 5 Dielectric gel electrolytes for safe charge storage from 20 to 80 °C by double-layer capacitors 53 5-1 Introduction 53 5-2Experimental 54 5-2-1 Materials 54 5-2-2 Electrolyte preparation 55 5-2-3 EDLC fabrication 55 5-2-4 EDLCs Characterization 56 5-3 Results and discussion 57 5-3-1 GPE characterization 57 5-3-2 Electrochemical performance of EDLCs at ambient temperature 69 5-3-3 Performance of EDLCs over a wide temperature range 76 5-4 Conclusions 83 Chapter 6 Overall Conclusions 84 Chapter 7 Reference 86 Curriculum Vitae 94

    [1] M.S. Guney, Y. Tepe, Renewable and Sustainable Energy Reviews, 75 (2017) 1187-1197.
    [2] N.L. Panwar, S.C. Kaushik, S. Kothari, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524.
    [3] P.J. Hall, E.J. Bain, Energy Policy, 36 (2008) 4352-4355.
    [4] R. Vicentini, J.P. Aguiar, R. Beraldo, R. Venâncio, F. Rufino, L.M. Da Silva, H. Zanin, Batteries & Supercaps, 4 (2021) 1291-1303.
    [5] S.G. Chalk, J.F. Miller, Journal of Power Sources, 159 (2006) 73-80.
    [6] P. Roy, S.K. Srivastava, Journal of Materials Chemistry A, 3 (2015) 2454-2484.
    [7] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renewable and Sustainable Energy Reviews, 58 (2016) 1189-1206.
    [8] L.L. Zhang, X.S. Zhao, Chemical Society Reviews, 38 (2009) 2520-2531.
    [9] A. Burke, Journal of Power Sources, 91 (2000) 37-50.
    [10] J.R. Miller, A.F. Burke, The Electrochemical Society interface, 17 (2008) 53-57.
    [11] S. Wasterlain, A. Guven, H. Gualous, J. Fauvarque, R. Gallay, ESSCAP2006, (2006).
    [12] M.E. Şahin, F. Blaabjerg, A. Sangwongwanich, Energies, 15 (2022) 674.
    [13] D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Chem. Soc. Rev., 44 (2015) 1777-1790.
    [14] R. Kötz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
    [15] J.R. Miller, P. Simon, SCIENCE, 321 (2008).
    [16] M. Winter, R.J. Brodd, Chem. Rev., 104 (2004) 4245-4270.
    [17] X.-n. Tang, S.-k. Zhu, J. Ning, X.-f. Yang, M.-y. Hu, J.-j. Shao, New Carbon Materials, 36 (2021) 702-710.
    [18] J.-G. Wang, F. Kang, B. Wei, Progress in Materials Science, 74 (2015) 51-124.
    [19] F.T. Ulaby, Fundamentals of applied electromagnetics, Prentice-Hall, Inc., 1996.
    [20] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chemical Society Reviews, 44 (2015) 7484-7539.
    [21] J. Zhang, X.S. Zhao, ChemSusChem, 5 (2012) 818-841.
    [22] S.T. Senthilkumar, R.K. Selvan, J.S. Melo, Journal of Materials Chemistry A, 1 (2013) 12386-12394.
    [23] H. Helmholtz, Annalen der Physik, 165 (1853) 211-233.
    [24] A.G. Pandolfo, A.F. Hollenkamp, Journal of Power Sources, 157 (2006) 11-27.
    [25] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Advanced Materials, 26 (2014) 2219-2251.
    [26] M.A. Brown, Z. Abbas, A. Kleibert, R.G. Green, A. Goel, S. May, T.M. Squires, Physical Review X, 6 (2016) 011007.
    [27] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy & Environmental Science, 3 (2010) 1238-1251.
    [28] H. Shao, Y.-C. Wu, Z. Lin, P.-L. Taberna, P. Simon, Chemical Society Reviews, 49 (2020) 3005-3039.
    [29] A. Davies, A. Yu, The Canadian Journal of Chemical Engineering, 89 (2011) 1342-1357.
    [30] Z. Salele Iro, International Journal of Electrochemical Science, 11 (2016) 10628-10643.
    [31] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose, Nanoscale Advances, 1 (2019) 3807-3835.
    [32] X.-L. Wu, A.-W. Xu, Journal of Materials Chemistry A, 2 (2014) 4852-4864.
    [33] X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Advanced Energy Materials, 8 (2018) 1702184.
    [34] M. Zhu, J. Wu, Y. Wang, M. Song, L. Long, S.H. Siyal, X. Yang, G. Sui, Journal of Energy Chemistry, 37 (2019) 126-142.
    [35] K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, Ionics, 22 (2016) 1259-1279.
    [36] J. Adebahr, A.S. Best, N. Byrne, P. Jacobsson, D.R. MacFarlane, M. Forsyth, Physical Chemistry Chemical Physics, 5 (2003) 720-725.
    [37] W. Wang, P. Alexandridis, Polymers, 8 (2016) 387.
    [38] S. Tang, W. Guo, Y. Fu, Advanced Energy Materials, 11 (2021) 2000802.
    [39] P.S. Mohanty, S. Nojd, M.J. Bergman, G. Nagele, S. Arrese-Igor, A. Alegria, R. Roa, P. Schurtenberger, J.K.G. Dhont, Soft Matter, 12 (2016) 9705-9727.
    [40] G. Gautham Prasad, N. Shetty, S. Thakur, Rakshitha, K.B. Bommegowda, IOP Conference Series: Materials Science and Engineering, 561 (2019) 012105.
    [41] M.D. Stoller, R.S. Ruoff, Energy & Environmental Science, 3 (2010) 1294-1301.
    [42] A. Manuel Stephan, K.S. Nahm, Polymer, 47 (2006) 5952-5964.
    [43] P. Simon, Y. Gogotsi, nature materials, 7 (2008).
    [44] P.K. Shen, C.-Y. Wang, S.P. Jiang, X. Sun, J. Zhang, Electrochemical Energy: Advanced Materials and Technologies, 2017.
    [45] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.
    [46] D.E. Fenton, J.M. Parker, P.V. Wright, Polymer, 14 (1973) 589.
    [47] L. Long, S. Wang, M. Xiao, Y. Meng, Journal of Materials Chemistry A, 4 (2016) 10038-10069.
    [48] C.A. Angell, C. Liu, E. Sanchez, Nature, 362 (1993) 137-139.
    [49] F.B. Dias, L. Plomp, J.B.J. Veldhuis, Journal of Power Sources, 88 (2000) 169-191.
    [50] G. Feuillade, P. Perche, J. Appl. Electrochem., 5 (1975) 63-69.
    [51] J.M. Tarascon, A.S. Gozdz, C. Schmutz, F. Shokoohi, P.C. Warren, Solid State Ionics, 86-88 (1996) 49-54.
    [52] S. Liang, W. Yan, X. Wu, Y. Zhang, Y. Zhu, H. Wang, Y. Wu, Solid State Ionics, 318 (2018) 2-18.
    [53] F. Baskoro, H.Q. Wong, H.-J. Yen, ACS Applied Energy Materials, 2 (2019) 3937-3971.
    [54] X. Liu, T. Osaka, J. Electrochem. Soc., 144 (1997).
    [55] R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, ACS Applied Materials & Interfaces, 6 (2014) 15434-15439.
    [56] J. Hu, K. Xie, X. Liu, S. Guo, C. Shen, X. Liu, X. Li, J.-g. Wang, B. Wei, Electrochim. Acta, 227 (2017) 455-461.
    [57] C.-W. Tu, K.-Y. Liu, A.-T. Chien, C.-H. Lee, K.-C. Ho, K.-F. Lin, Eur. Polym. J., 44 (2008) 608-614.
    [58] M.-F. Hsueh, C.-W. Huang, C.-A. Wu, P.-L. Kuo, H. Teng, The Journal of Physical Chemistry C, 117 (2013) 16751-16758.
    [59] D.A. Hoble, M.A. Silaghi, Magnetodielectric Materials – Use in Inductive Heating Process, 2012.
    [60] S.N. Syahidah, S.R. Majid, Electrochim. Acta, 112 (2013) 678-685.
    [61] Y.-D. Chiou, D.-S. Tsai, H.H. Lam, C.-h. Chang, K.-Y. Lee, Y.-S. Huang, Nanoscale, 5 (2013) 8122-8129.
    [62] V. Lachat, V. Varshney, A. Dhinojwala, M.S. Yeganeh, Macromolecules, 42 (2009) 7103-7107.
    [63] Q.-Y. Wu, X.-N. Chen, L.-S. Wan, Z.-K. Xu, The Journal of Physical Chemistry B, 116 (2012) 8321-8330.
    [64] H. Akashi, K. Sekai, K.-i. Tanaka, Electrochim. Acta, 43 (1998) 1193-1197.
    [65] W. Huang, Z. Zhu, L. Wang, S. Wang, H. Li, Z. Tao, J. Shi, L. Guan, J. Chen, Angew. Chem. Int. Ed., 52 (2013) 9162-9166.
    [66] Z. Zhu, M. Hong, D. Guo, J. Shi, Z. Tao, J. Chen, JACS, 136 (2014) 16461-16464.
    [67] D. Xu, J. Jin, C. Chen, Z. Wen, ACS Applied Materials & Interfaces, 10 (2018) 38526-38537.
    [68] L. Song, X. Cao, L. Li, Q. Wang, H. Ye, L. Gu, C. Mao, J. Song, S. Zhang, H. Niu, Adv. Funct. Mater., 27 (2017) 1700474-n/a.
    [69] A. Sarı, C. Alkan, A. Karaipekli, O. Uzun, J. Appl. Polym. Sci., 116 (2010) 929-933.
    [70] A. Daneshvar, M. Moosavi, Industrial & Engineering Chemistry Research, 55 (2016) 6517-6529.
    [71] X. Zhang, L. Wang, J. Peng, P. Cao, X. Cai, J. Li, M. Zhai, Advanced Materials Interfaces, 2 (2015) 1500267-n/a.
    [72] K. Sun, F. Ran, G. Zhao, Y. Zhu, Y. Zheng, M. Ma, X. Zheng, G. Ma, Z. Lei, RSC Advances, 6 (2016) 55225-55232.
    [73] E.Y. Tyunina, V.N. Afanasiev, M.D. Chekunova, Journal of Chemical & Engineering Data, 56 (2011) 3222-3226.
    [74] E.Y. Tyunina, M.D. Chekunova, V.N. Afanasiev, Russ. J. Electrochem., 49 (2013) 453-457.
    [75] S. Chandra, S.S. Sekhon, N. Arora, Ionics, 6 (2000) 112-118.
    [76] S. Chandra, S.S. Sekhon, R. Srivastava, N. Arora, Solid State Ionics, 154-155 (2002) 609-619.
    [77] F. Bonhomme, J.C. Lassègues, L. Servant, J. Electrochem. Soc., 148 (2001) E450-E458.
    [78] A.S. Quist, J.B. Bates, G.E. Boyd, The Journal of Chemical Physics, 54 (1971) 4896-4901.
    [79] D.M. Seo, O. Borodin, S.-D. Han, Q. Ly, P.D. Boyle, W.A. Henderson, J. Electrochem. Soc., 159 (2012) A553-A565.
    [80] Y.-M. Chen, S.-T. Hsu, Y.-H. Tseng, T.-F. Yeh, S.-S. Hou, J.-S. Jan, Y.-L. Lee, H. Teng, Small, 14 (2018) 1703571.
    [81] K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, Chem. Phys. Lett., 692 (2018) 19-27.
    [82] A.L. Saroj, R.K. Singh, S. Chandra, J. Phys. Chem. Solids, 75 (2014) 849-857.
    [83] C.M. Roland, JACS, 125 (2003) 7748-7748.
    [84] E.P. Grishina, L.M. Ramenskaya, A.N. Mudrov, Eur. Polym. J., 59 (2014) 247-253.
    [85] C.M.S. Prasanna, S.A. Suthanthiraraj, Ionics, (2018).
    [86] C.M. Mathew, K. Kesavan, S. Rajendran, Polym. Int., 64 (2015) 750-757.
    [87] A. Awadhia, S.K. Patel, S.L. Agrawal, Prog. Cryst. Growth Charact. Mater., 52 (2006) 61-68.
    [88] S. Zhang, H. Wang, G. Wang, Z. Jiang, Appl. Phys. Lett., 101 (2012) 012904.
    [89] S. Yoon, J. Electrochem. Soc., 147 (2000).
    [90] I.D. Raistrick, Electrochim. Acta, 35 (1990) 1579-1586.
    [91] D.D. Macdonald, Electrochim. Acta, 51 (2006) 1376-1388.
    [92] J.H. Jang, S. Jeon, J.H. Cho, S.-K. Kim, S.-Y. Lee, E. Cho, H.-J. Kim, J. Han, T.-H. Lim, J. Electrochem. Soc., 156 (2009) B1293-B1300.
    [93] H.-C. Huang, Y.-C. Yen, J.-C. Chang, C.-W. Su, P.-Y. Chang, I.W. Sun, C.-T. Hsieh, Y.-L. Lee, H. Teng, Journal of Materials Chemistry A, 4 (2016) 19160-19169.
    [94] J. Wei, Z. Zhang, J.-K. Tseng, I. Treufeld, X. Liu, M.H. Litt, L. Zhu, ACS Applied Materials & Interfaces, 7 (2015) 5248-5257.
    [95] M. Aneke, M. Wang, Applied Energy, 179 (2016) 350-377.
    [96] Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Small, 13 (2017) 1701827.
    [97] H. Gao, Z. Zhao, Y. Cai, J. Zhou, W. Hua, L. Chen, L. Wang, J. Zhang, D. Han, M. Liu, L. Jiang, Nature Communications, 8 (2017) 15911.
    [98] F. Mo, G. Liang, Q. Meng, Z. Liu, H. Li, J. Fan, C. Zhi, Energy & Environmental Science, 12 (2019) 706-715.
    [99] G.P. Pandey, T. Liu, C. Hancock, Y. Li, X.S. Sun, J. Li, Journal of Power Sources, 328 (2016) 510-519.
    [100] H. Yong, H. Park, C. Jung, J. Power Sources, 447 (2020) 227390.
    [101] L. Dagousset, G. Pognon, G.T.M. Nguyen, F. Vidal, S. Jus, P.-H. Aubert, J. Power Sources, 391 (2018) 86-93.
    [102] C.-H. Lin, W.-C. Li, T.-T. Cheng, P.-H. Wang, W.-N. Lee, T.-C. Wen, Journal of the Taiwan Institute of Chemical Engineers, 126 (2021) 324-331.
    [103] G. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, J. Power Sources, 256 (2014) 281-287.
    [104] X. Hu, L. Fan, G. Qin, Z. Shen, J. Chen, M. Wang, J. Yang, Q. Chen, J. Power Sources, 414 (2019) 201-209.
    [105] P.-H. Wang, C.-H. Lin, L.-H. Tseng, T.-C. Wen, Journal of the Taiwan Institute of Chemical Engineers, 118 (2021) 152-158.
    [106] S. Alipoori, S. Mazinani, S.H. Aboutalebi, F. Sharif, Journal of Energy Storage, 27 (2020) 101072.
    [107] X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, K. Liu, Y. Xiang, Y. Cui, Nano letters, 18 (2018) 3829-3838.
    [108] S. Zinatloo-Ajabshir, M. Salavati-Niasari, Composites Part B: Engineering, 174 (2019) 106930.
    [109] G.B. Appetecchi, P. Romagnoli, B. Scrosati, Electrochem. Commun., 3 (2001) 281-284.
    [110] D. Saikia, A. Kumar, Eur. Polym. J., 41 (2005) 563-568.
    [111] M. Wachtler, D. Ostrovskii, P. Jacobsson, B. Scrosati, Electrochim. Acta, 50 (2004) 357-361.
    [112] H. Etemadi, S. Afsharkia, S. Zinatloo-Ajabshir, E. Shokri, Polymer Engineering & Science, 61 (2021) 2364-2375.
    [113] S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Ultrasonics Sonochemistry, 42 (2018) 171-182.
    [114] F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nature, 394 (1998) 456-458.
    [115] W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu, Y. Wang, Y. Cao, J. Li, Solid State Ionics, 315 (2018) 7-13.
    [116] X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, Adv. Funct. Mater., 23 (2013) 3353-3360.
    [117] P. Hu, Y. Duan, D. Hu, B. Qin, J. Zhang, Q. Wang, Z. Liu, G. Cui, L. Chen, ACS Applied Materials & Interfaces, 7 (2015) 4720-4727.
    [118] X. Fang, X. Liu, Z.-K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, Journal of Materials Chemistry A, 3 (2015) 10005-10012.
    [119] J.-h. Yang, X. Xie, Z.-z. He, Y. Lu, X.-d. Qi, Y. Wang, Chem. Eng. J., 355 (2019) 137-149.
    [120] S. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, L. Sun, Carbon, 114 (2017) 209-216.
    [121] S.D. Tillmann, P. Isken, A. Lex-Balducci, J. Power Sources, 271 (2014) 239-244.
    [122] S. Ketabi, K. Lian, Electrochim. Acta, 103 (2013) 174-178.
    [123] W.S. Hummers, R.E. Offeman, JACS, 80 (1958) 1339-1339.
    [124] Y.-H. Su, Y.-H. Lin, Y.-H. Tseng, Y.-L. Lee, J.-S. Jan, C.-C. Chiu, S.-S. Hou, H. Teng, J. Power Sources, 481 (2021) 228869.
    [125] A.L. Higginbotham, J.R. Lomeda, A.B. Morgan, J.M. Tour, ACS Applied Materials & Interfaces, 1 (2009) 2256-2261.
    [126] B. Sang, Z.-w. Li, X.-h. Li, L.-g. Yu, Z.-j. Zhang, Journal of Materials Science, 51 (2016) 8271-8295.
    [127] B. Wu, L. Wang, Z. Li, M. Zhao, K. Chen, S. Liu, Y. Pu, J. Li, J. Electrochem. Soc., 163 (2016) A2248-A2252.
    [128] F. Carosio, L. Maddalena, J. Gomez, G. Saracco, A. Fina, Advanced Materials Interfaces, 5 (2018) 1801288.
    [129] M. Dvoyashkin, D. Leistenschneider, J.D. Evans, M. Sander, L. Borchardt, Advanced Energy Materials, 11 (2021) 2100700.
    [130] J. Hu, S. Zhang, B. Tang, Energy Storage Materials, 34 (2021) 260-281.
    [131] W. Li, Z. Song, J. Qian, Z. Tan, H. Chu, X. Wu, W. Nie, X. Ran, Carbon, 141 (2019) 728-738.
    [132] S. Ramesh, H.M. Ng, R. Shanti, K. Ramesh, Polymer-Plastics Technology and Engineering, 52 (2013) 1474-1481.
    [133] P. Slepička, N. Slepičková Kasálková, J. Siegel, Z. Kolská, V. Švorčík, Materials, 13 (2020) 1.
    [134] J. Jauhari, M.R. Almafie, L. Marlina, Z. Nawawi, I. Sriyanti, RSC Advances, 11 (2021) 11233-11243.
    [135] G. Liu, T. Zhang, Y. Feng, Y. Zhang, C. Zhang, Y. Zhang, X. Wang, Q. Chi, Q. Chen, Q. Lei, Chem. Eng. J., 389 (2020) 124443.
    [136] B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks, A. Facchetti, Chem. Rev., 118 (2018) 5690-5754.
    [137] Q. Li, S. Tan, H. Gong, J. Lu, W. Zhang, X. Zhang, Z. Zhang, Phys. Chem. Chem. Phys., 23 (2021) 3856-3865.
    [138] X. Zhou, K. Zhao, Soft Matter, 14 (2018) 1130-1141.
    [139] K.S. Kumar, S. Pittala, S. Sanyadanam, P. Paik, RSC Advances, 5 (2015) 14768-14779.
    [140] G. George, S.M. Simon, P. V. P, S. M. S, M. Faisal, R. Wilson, A. Chandran, B. P. R, C. Joseph, N.V. Unnikrishnan, RSC Advances, 8 (2018) 30412-30428.
    [141] M.M. Rao, J.S. Liu, W.S. Li, Y. Liang, D.Y. Zhou, Journal of Membrane Science, 322 (2008) 314-319.
    [142] K.-H. Lee, Y.-G. Lee, J.-K. Park, D.-Y. Seung, Solid State Ionics, 133 (2000) 257-263.
    [143] U.O. Uyor, A.P. Popoola, O. Popoola, V.S. Aigbodion, Adv. Polym. Tech., 37 (2018) 2838-2858.
    [144] K.M. Diederichsen, H.G. Buss, B.D. McCloskey, Macromolecules, 50 (2017) 3831-3840.
    [145] D. Bhattacharjya, D. Carriazo, J. Ajuria, A. Villaverde, J. Power Sources, 439 (2019) 227106.
    [146] S. Zhang, N. Pan, Advanced Energy Materials, 5 (2015) 1401401.
    [147] C. Pean, B. Rotenberg, P. Simon, M. Salanne, J. Power Sources, 326 (2016) 680-685.
    [148] C. Péan, C. Merlet, B. Rotenberg, P.A. Madden, P.-L. Taberna, B. Daffos, M. Salanne, P. Simon, ACS Nano, 8 (2014) 1576-1583.
    [149] M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Energy & Environmental Science, 8 (2015) 2296-2319.
    [150] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater., 21 (2011) 2366-2375.
    [151] R. Kötz, M. Hahn, R. Gallay, J. Power Sources, 154 (2006) 550-555.
    [152] P. Liu, M. Verbrugge, S. Soukiazian, J. Power Sources, 156 (2006) 712-718.
    [153] P. Kurzweil, M. Chwistek, J. Power Sources, 176 (2008) 555-567.
    [154] V. Kumaravel, J. Bartlett, S.C. Pillai, Advanced Energy Materials, 11 (2021) 2002869.
    [155] D.W. Kim, S.M. Jung, H.Y. Jung, Journal of Materials Chemistry A, 8 (2020) 532-542.
    [156] X. Jin, G. Sun, G. Zhang, H. Yang, Y. Xiao, J. Gao, Z. Zhang, L. Qu, Nano Research, 12 (2019) 1199-1206.
    [157] L.H. Hess, L. Wittscher, A. Balducci, Phys. Chem. Chem. Phys., 21 (2019) 9089-9097.

    無法下載圖示 校內:2027-05-05公開
    校外:2027-05-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE