簡易檢索 / 詳目顯示

研究生: 張文馨
Chang, Wen-Hsin
論文名稱: 過渡態金屬陽離子摻雜在δ-MnO2作為酸性催化劑在酯化反應中之影響
The effect of doping transition metal cations in δ-MnO2 as acidic catalyst in esterification
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 66
中文關鍵詞: 生質柴油酯化反應δ-MnO2非均相催化劑酸性催化劑
外文關鍵詞: Biodiesel, δ-MnO2, heterogeneous catalyst, acidic catalyst
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石油在人們日常生活中需求量極高,但石油為非再生能源,且環保意識崛起,生質柴油越來越受重視。因在鹼性催化劑催化下反應速率較快,生質柴油一般使用鹼性催化劑透過轉酯化反應生成,但廢油中所含游離脂肪酸(FFA)較高,易與鹼性催化劑反應產生皂。因而在此步驟前之前先使用酸性催化劑,透過酯化反應將FFA含量降低後再使用鹼性催化劑,減緩皂化現象。
    本實驗主旨為開發一低成本、對環境友善之酯化反應酸性催化劑,選擇使用δ-MnO2作為新的酸性催化劑,期望藉由層狀結構的δ-MnO2摻雜不同過渡態金屬陽離子,提升δ-MnO2作為固態酸性催化劑之活性。XRD分析摻雜陽離子濃度對δ-MnO2晶面間距的改變,得到摻雜之飽和濃度比例,並以ICP-OES分析催化劑實際組成,除了鉻離子沒有摻雜到δ-MnO2 外,各元素摻雜之濃度為:Cu/Mn = 0.06、Fe/Mn = 0.07、Ni/Mn = 0.16、Co/Mn = 0.4,並以銅摻雜與未摻雜之催化劑代表,比較TEM結果差異,確認可以透過此實驗合成法將陽離子摻雜進錳氧化層中。
    根據酯化反應結果,摻雜不同過渡態金屬陽離子可提高δ-MnO2作為酯化反應非均相酸性催化劑效能。以XPS、UV-Vis與UPS分析,發現摻雜過渡態金屬陽離子使δ-MnO2中Mn3+/Mn4+比例上升、FFA與催化劑間電子轉移能障減小,可能使摻雜的δ-MnO¬2成為活性較高的固態酸性催化劑。

    Biodiesel is produced by transesterification and esterification with basic and acidic catalyst, respectively. This work modified δ-MnO2 with different transition metal cation dopants (Cu, Cr, Co, Ni and Fe) as acidic catalyst. Doping concentration was determined from d-spacing changes of XRD patterns (fine scan). According to ICP results, cations can dope into δ-MnO2 except Cr ions by calcination method. Comparing results between conversion of esterification and XPS, UV-Vis and UPS analysis, it showed that higher Mn¬3+/Mn4+ atomic ratio and reduced electron transfer barrier produced higher conversion. Fe-doped δ-MnO2 had the highest FFA conversion (85%) in comparison to other the catalysts under the same reaction conditions.

    摘要 I Abstract II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 前言 1 第二章 文獻回顧 4 2.1 生質柴油 4 2.1.1 生質柴油原料 4 2.1.2 製造流程 6 2.1.3 生質柴油規範 7 2.2 鹼性催化劑 9 2.2.1 鹼性均相催化劑 9 2.2.2 鹼性非均相催化劑 10 2.3 酸性催化劑 11 2.3.1 酸性均相催化劑 11 2.3.2 酸性非均相催化劑 11 2.4 非均相酸性催化劑機制 14 2.5 層狀錳氧化物(δ-MnO2) 14 第三章 實驗方法 17 3.1 實驗架構 17 3.2 實驗藥品 18 3.3 實驗分析儀器 19 3.3.1 X光繞射儀 (X-ray Diffractometer) 20 3.3.2 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma Optical Emission Spectrometry) 20 3.3.3 熱重分析儀 (Thermogravimetric Analysis) 21 3.3.4 化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis) 21 3.3.5 紫外線-可見光光譜儀 (Ultraviolet–Visible Spectroscopy) 21 3.4 實驗過程 22 3.4.1 催化劑製備 22 3.4.2 合成之催化劑性質分析 22 3.4.3 酯化反應 22 3.4.4 酯化反應轉化率分析 23 3.4.5 酯化反應後油品質檢測 24 3.4.6 酯化反應效果差異可能因素分析 24 第四章 結果與討論 28 4.1 摻雜對δ-MnO2結構之影響(X-Ray Diffractometer) 28 4.2 催化劑組成分析(ICP-OES and TGA) 33 4.3 摻雜不同陽離子催化劑之FFA轉化率效能 34 4.4 離子在酯化反應過程中溶出現象探討(Leaching Test) 36 4.5 摻雜對催化劑性質與活性影響(XPS) 38 4.6 摻雜不同陽離子催化劑能階結構之探討(UV-Vis & UPS) 42 第五章 結論 45 參考文獻 46 附錄 52 附錄一 XRD:過錳酸鉀在不同溫度(至600℃)之產物 52 附錄二 XRD:過渡態金屬陽離子摻雜濃度之XRD 53 附錄三 合成δ-MnO2結構分析(HR-AEM) 56 附錄四 XPS :Mn2P3/2峰值擬合結果 57 附錄五 UV-Vis之 Tauc圖 (能隙值量測) 60 附錄六 UPS能譜 63 附錄七 0.06Fe催化劑之重複使用效能 66

    1. Peterson, C.L. and T. Hustrulid, Carbon cycle for rapeseed oil biodiesel fuels. Biomass and Bioenergy, 1998. 14(2): p. 91-101.
    2. Fuertes, A., J. Da Costa-Serra, and A. Chica, New catalysts based on Ni-Birnessite and Ni-Todorokite for the efficient production of hydrogen by bioethanol steam reforming. Energy Procedia, 2012. 29: p. 181-191.
    3. Eren, B. and H. Gumus, Copper doped K-birnessite as an efficient catalyst for the synthesis of 2-aryl benzimidazoles. Reaction Kinetics, Mechanisms and Catalysis, 2015. 114(2): p. 571-582.
    4. Lotero, E., Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, and J.G. Goodwin, Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 2005. 44(14): p. 5353-5363.
    5. 賴宣宏、黃建誠、洪永杰. 生質柴油製備技術專利地圖與專利分析. 2005; Available from: http://designer.mech.yzu.edu.tw/articlesystem/article/compressedfile/(2005-06-29)%20%E7%94%9F%E8%B3%AA%E6%9F%B4%E6%B2%B9%E8%A3%BD%E5%82%99%E6%8A%80%E8%A1%93%E5%B0%88%E5%88%A9%E5%9C%B0%E5%9C%96%E8%88%87%E5%B0%88%E5%88%A9%E5%88%86%E6%9E%90.aspx?ArchID=778.
    6. Santos, F.F., J.Q. Malveira, M.G. Cruz, and F.A. Fernandes, Production of biodiesel by ultrasound assisted esterification of Oreochromis niloticus oil. Fuel, 2010. 89(2): p. 275-279.
    7. Saraf, S. and B. Thomas, Influence of feedstock and process chemistry on biodiesel quality. Process Safety and Environmental Protection, 2007. 85(5): p. 360-364.
    8. Goodrum, J.W., D.P. Geller, and T.T. Adams, Rheological characterization of animal fats and their mixtures with# 2 fuel oil. Biomass and Bioenergy, 2003. 24(3): p. 249-256.
    9. Liu, K.K., F.T. Barrows, R.W. Hardy, and F.M. Dong, Body composition, growth performance, and product quality of rainbow trout (Oncorhynchus mykiss) fed diets containing poultry fat, soybean/corn lecithin, or menhaden oil. Aquaculture, 2004. 238(1): p. 309-328.
    10. Kim, H.-J., B.-S. Kang, M.-J. Kim, Y.M. Park, D.-K. Kim, J.-S. Lee, and K.-Y. Lee, Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 2004. 93: p. 315-320.
    11. Demirbaş, A., Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management, 2003. 44(13): p. 2093-2109.
    12. Issariyakul, T., M.G. Kulkarni, L.C. Meher, A.K. Dalai, and N.N. Bakhshi, Biodiesel production from mixtures of canola oil and used cooking oil. Chemical Engineering Journal, 2008. 140(1): p. 77-85.
    13. Wang, Y., S. Ou, P. Liu, and Z. Zhang, Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Conversion and Management, 2007. 48(1): p. 184-188.
    14. Demirbas, A., Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 2009. 50(4): p. 923-927.
    15. Canakci, M. and H. Sanli, Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology & Biotechnology, 2008. 35(5): p. 431-441.
    16. Chhetri, A.B., K.C. Watts, and M.R. Islam, Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 2008. 1(1): p. 3-18.
    17. Leung, D.Y., X. Wu, and M. Leung, A review on biodiesel production using catalyzed transesterification. Applied Energy, 2010. 87(4): p. 1083-1095.
    18. Freedman, B., R.O. Butterfield, and E.H. Pryde, Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists' Society, 1986. 63(10): p. 1375-1380.
    19. Carruthers, S., Vegetable oil fuels. Proceedings of the International conference on plant and vegetable oils as fuels, Fargo, North Dakota, USA, August, 1982: American Society of Agricultural Engineers, Michigan. 1982. 400 pp. 1984, Elsevier.
    20. Meher, L., D.V. Sagar, and S. Naik, Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 2006. 10(3): p. 248-268.
    21. Ngu, T.A. and Z. Li, Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification. Green Chemistry, 2014. 16(3): p. 1202-1210.
    22. Gumba, R.E., S. Saallah, M. Misson, C.M. Ongkudon, and A. Anton, Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Research Journal, 2016. 3(3): p. 431-447.
    23. Leung, D. and Y. Guo, Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Processing Technology, 2006. 87(10): p. 883-890.
    24. Gotch, A.J., A.J. Reeder, and A. McCormick, Study of heterogeneous base catalysts for biodiesel production. J. Undergrad. Chem. Res, 2008. 4: p. 58-62.
    25. Wang, Y., S. Ou, P. Liu, F. Xue, and S. Tang, Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 2006. 252(1): p. 107-112.
    26. Freedman, B., E. Pryde, and T. Mounts, Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists' Society, 1984. 61(10): p. 1638-1643.
    27. Jitputti, J., B. Kitiyanan, P. Rangsunvigit, K. Bunyakiat, L. Attanatho, and P. Jenvanitpanjakul, Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal, 2006. 116(1): p. 61-66.
    28. Vieira, S.S., Z.M. Magriotis, I. Graça, A. Fernandes, M.F. Ribeiro, J.M.F. Lopes, S.M. Coelho, S. Nadiene Ap V, and A.A. Saczk, Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO 4 2−/La 2 O 3. Catalysis Today, 2017. 279: p. 267-273.
    29. de Almeida, R.M., L.K. Noda, N.S. Gonçalves, S.M. Meneghetti, and M.R. Meneghetti, Transesterification reaction of vegetable oils, using superacid sulfated TiO 2–base catalysts. Applied Catalysis A: General, 2008. 347(1): p. 100-105.
    30. Lam, M.K., K.T. Lee, and A.R. Mohamed, Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology Advances, 2010. 28(4): p. 500-518.
    31. Kulkarni, M.G., R. Gopinath, L.C. Meher, and A.K. Dalai, Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chemistry, 2006. 8(12): p. 1056-1062.
    32. Ching, S., D.J. Petrovay, M.L. Jorgensen, and S.L. Suib, Sol− Gel Synthesis of Layered Birnessite-Type Manganese Oxides. Inorganic Chemistry, 1997. 36(5): p. 883-890.
    33. Chen, R., P. Zavalij, and M.S. Whittingham, Hydrothermal Synthesis and Characterization of K x MnO2. y H2O. Chemistry of Materials, 1996. 8(6): p. 1275-1280.
    34. Feng, Q., E.-H. Sun, K. Yanagisawa, and N. Yamasaki, Synthesis of birnessite-type sodium manganese oxides by solution reaction and hydrothermal methods. Journal of the Ceramic Society of Japan, 1997. 105(1223): p. 564-568.
    35. Lanson, B., V.A. Drits, Q. Feng, and A. Manceau, Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell. American Mineralogist, 2002. 87(11-12): p. 1662-1671.
    36. Chen, C.-C., D. Golden, and J. Dixon, Transformation of synthetic birnessite to cryptomelane: an electron microscopic study. Clays and Clay Minerals, 1986. 34(5): p. 565-571.
    37. Golden, D., J. Dixon, and C. Chen, Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays and Clay Minerals, 1986. 34(5): p. 511-520.
    38. Ogata, A., S. Komaba, and N. Kumagai, Calcination Synthesis of Birnessite Type Manganese Dioxides Doped with Cobalt for Rechargeable Li Batteries. Electrochemistry, 2006. 74(1): p. 28-31.
    39. Ogata, A., S. Komaba, R. Baddour-Hadjean, J.-P. Pereira-Ramos, and N. Kumagai, Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochimica Acta, 2008. 53(7): p. 3084-3093.
    40. Komaba, S., N. Kumagai, and S. Chiba, Synthesis of layered MnO 2 by calcination of KMnO 4 for rechargeable lithium battery cathode. Electrochimica Acta, 2000. 46(1): p. 31-37.
    41. Deibert, B.J., J. Zhang, P.F. Smith, K.W. Chapman, S. Rangan, D. Banerjee, K. Tan, H. Wang, N. Pasquale, and F. Chen, Surface and Structural Investigation of a MnOx Birnessite‐Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Chemistry-A European Journal, 2015. 21(40): p. 14218-14228.
    42. Nakayama, M., T. Kanaya, J.-W. Lee, and B.N. Popov, Electrochemical synthesis of birnessite-type layered manganese oxides for rechargeable lithium batteries. Journal of Power Sources, 2008. 179(1): p. 361-366.
    43. Johnson, E.A. and J.E. Post, Water in the interlayer region of birnessite: Importance in cation exchange and structural stability. American Mineralogist, 2006. 91(4): p. 609-618.
    44. Thenuwara, A.C., S.L. Shumlas, N.H. Attanayake, E.B. Cerkez, I.G. McKendry, L. Frazer, E. Borguet, Q. Kang, M.J. Zdilla, and J. Sun, Copper-intercalated birnessite as a water oxidation catalyst. Langmuir, 2015. 31(46): p. 12807-12813.
    45. Wang, J., G. Zhang, and P. Zhang, Layered birnessite-type MnO 2 with surface pits for enhanced catalytic formaldehyde oxidation activity. Journal of Materials Chemistry A, 2017. 5(12): p. 5719-5725.
    46. Bach, S., J. Pereira-Ramos, N. Baffier, and R. Messina, Birnessite manganese dioxide synthesized via a sol—gel process: a new rechargeable cathodic material for lithium batteries. Electrochimica Acta, 1991. 36(10): p. 1595-1603.
    47. Kumagai, N., S. Komaba, H. Sakai, and N. Kumagai, Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode. Journal of Power Sources, 2001. 97: p. 515-517.
    48. Nesbitt, H., G. Canning, and G. Bancroft, XPS study of reductive dissolution of 7Å-birnessite by H 3 AsO 3, with constraints on reaction mechanism. Geochimica et Cosmochimica Acta, 1998. 62(12): p. 2097-2110.
    49. Chai, M., Q. Tu, M. Lu, and Y.J. Yang, Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology, 2014. 125: p. 106-113.
    50. Chitrakar, R., Y. Makita, and A. Sonoda, Cesium ion exchange on synthetic birnessite (Na0. 35MnO2· 0.6 H2O). Chemistry Letters, 2011. 40(10): p. 1118-1120.
    51. Kim, Y., Y. Hong, M.G. Kim, and J. Cho, Li 0.93 [Li 0.21 Co 0.28 Mn 0.51] O 2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite. Electrochemistry Communications, 2007. 9(5): p. 1041-1046.
    52. Zhu, L., J. Wang, S. Rong, H. Wang, and P. Zhang, Cerium modified birnessite-type MnO 2 for gaseous formaldehyde oxidation at low temperature. Applied Catalysis B: Environmental, 2017. 211: p. 212-221.
    53. Tauc, J., R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 1968. 3(1): p. 37-46.

    無法下載圖示 校內:2018-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE