簡易檢索 / 詳目顯示

研究生: 邱明聖
Chiu, Min-Sen
論文名稱: 固體界面效應之探討
Interface Stresses in Solids
指導教授: 陳東陽
Chen, Tung-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 能量法表面/界面應力
外文關鍵詞: surface/interface stresses, energy approach
相關次數: 點閱:195下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物質的尺度越小,其表面積對體積之比例越大,表面效應愈大。廣義上,固體的表面應力不像流體之表面張力,具有等向特性;而固體之表面/界面應力是具有方向性的,這與固體表面的結晶方向存在有關係。本文擬以簡單直觀的方式,重新推導描述固體界面情況的廣義Young-Laplace方程式,以建立固體表面應力或界面應力在巨觀行為的架構;同時以相同的方式,推導熱傳導的界面模型,期望在表面/界面應力相關的實際問題中,提供一個簡便而直觀的程序。另外本文也以能量法架構球形和圓柱形異向性內含物在不同變形模式下固體界面的數學模式。

    The significance of surfaces becomes important in nano-scale structures in which the surface to volume ratio is high. In contrast with fluids, surface/interface stresses in solids may depend on crystallographic parameters and are generally non-hydrostatic. The interface conditions between two different solids incorporating the interface stresses will be referred to as the “generalized Young-Laplace equation”. In order to obtain a better understanding of the physical meaning of the generalized Young-Laplace equation, here we present a different derivation. The idea is based on the notion that the interface stresses can be modeled as in-plane stresses along the tangent planes of the curved surface and the stress vectors on the top and bottom of the curved surfaces are taken from its three-dimensional bulk neighborhood. Similar procedures can be applied to conduction phenomena. On the other hand, energy approach could be an alternative method to construct the interface condition. We will adopt this method to formulate the interface conditions for spherical and cylindrical inclusions.

    摘要 I 誌謝 III 目錄 IV 圖目錄 VI 符號 VII 第一章 緒論 1 1.1 研究動機、文獻回顧與相關研究 1 1.2 論文內容介紹 7 第二章 奈米尺度下固體界面的廣義Young-Laplace方程式 8 2.1流體Young-Laplace equation簡介 9 2.2 問題陳述以及特定正交曲線座標系統 11 2.3 三維架構下固體界面的彈性行為 14 2.4 三維架構下界面的熱傳導現象 20 2.5 特定幾何形狀內含物(球形和圓柱形)的界面情況 23 2.6 討論 24 2.7 二維平面應變的彈性界面模型 25 2.8 二維熱傳導現象之界面模型 28 第三章 以變分法建立異向性球形內含物之界面模型 31 3.1推導程序介紹 31 3.2球形內含物(spherical inclusion)之基本方程式 34 3.2.1 球形內含物與基質的應力-應變關係式 34 3.2.2 球形內含物與基質的應變-位移關係式 35 3.2.3 球形內含物之界面應力 36 3.3球形內含物對稱變形 36 3.4 球形內含物剪力變形 46 第四章 以變分法建立異向性圓柱形內含物之界面模型 71 4.1圓柱形內含物(fiber)之基本方程式 71 4.1.1 圓柱形內含物與基質的應力-應變關係式 72 4.1.2 圓柱形內含物與基質的應變-位移關係式 73 4.1.3 圓柱形內含物之界面應力 74 4.2 圓柱形內含物對稱變形 74 4.3 圓柱形內含物剪力變形 77 第五章 結論與展望 86 參考文獻 87 附錄A 91 附錄B 95 自述 104

    Baughman, R. H., Zakhidov, A. A., de Heer, W. A., Carbon nanotubes-the route toward applications, Science 297, pp787-792, 2002.

    Benveniste, Y. and Miloh, T., Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater. 33, pp309-323, 2001.

    Benveniste, Y., A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media, J. Mech. Phys. Solids 54, pp708-734, 2006.

    Bottomley, D. J. and Ogino, T., Alternative to the Shuttleworth formulation of solid surface stress, Phys. Rev. B 63, pp165412, 2001.

    Brooks, H., Metal Surface, American Society for Metals, Ohio, pp30-31, 1952.

    Cammarata, R. C., Surface and interface stress effects in thin films, Prog. Surf. Sci. 46, pp1-38, 1994.

    Chen, T., Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles, Mech. Mater. 14, pp257-268, 1993.

    Chen, T., Dvorak, G. J. and Benveniste, Y., Stress fields in composites reinforced by coated cylindrically orthotropic fibers, Mech. Mater. 9, pp17-32, 1990.

    Chen, T., Dvorak, G. J. and Yu, C. C., Size-dependent elastic properties of unidirectional nano-composites with interface stresses, Acta. Mech. in press, 2006.

    Cheng and Torquato, Effective Conductivity of Dispersions of Spheres with a Superconducting Interface, Proc. R. Soc. Lond. A 453, pp1331-1344, 1997.

    Christensen, R. M. and Lo, K. H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27, pp315-330, 1979.

    Duan, H. L., Wang, J., Huang, Z. P., Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids 53, pp1574-1596, 2005a.

    Duan, H. L., Wang, J., Huang, Z. P., Karihaloo, B. L., Eshelby formalism for nano-inhomogeneities, Proc. R. Soc. Lond. A 461, pp3335-3353, 2005b.

    Finn, R., Equilibrium Capillary Surfaces, Springer-Verlag, New York Inc, 1986.

    Fung, Y. C., A first course in continuum mechanics: for physical and biological engineers and scientists, Prentice-Hall Inc 3rd ed, 1994.

    Gibbs, J. W., The Collected Works of J.W. Gibbs, Vol.1, Longmans, New York, pp315, 1928.

    Gurtin, M. E. and Murdoch, A. I., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal 59, pp291-323, 1975.

    Gurtin, M. E. and Murdoch, A. I., Surface stress in solids, Int. J. Solids Struct. 14, pp431-440, 1978.

    Gurtin, M. E., Weissmüller, J. and Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philo. Mag. A 78, pp1093-1109, 1998.

    Herring, C., The Physics of Powder Metallurgy edited by Kingston, W. E., McGraw-Hill, New York, pp143-179, 1951.

    Landau, L. D. and Lifshitz, E. M., Fluid Mechanic, 2nd Ed., Pergamon Press, Oxford, 1987.

    Laplace, P. S. Traite de mechanique celeste; supplements au Livre X, Euvres Complete Vol.4, Gauthier-Villars, Paris, 1806.

    Miller, R. E. and Shenoy, V. B., Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, pp139-147, 2000.

    Miloh, T. and Benveniste, Y., On the Effective Conductivity of Composites with Ellipsoidal Inhomogeneities and Highly Conducting Interfaces, Proc. R. Soc. Lond. A 455, pp2687-2706, 1999.

    Nix, W. D. and Gao, H., An atomistic interpretation of interface stress, Scr. Mater. 39, pp1653-1661, 1998.

    Pellicer, J., Garcia-Morales, V. and Hernández, M. J., On the demonstration of the Laplace-Young equation in introductory physics courses, Phys. Educ. 35(2), pp126-129, 2000.

    Povstenko, Y. Z., Theoretical investigation of phenomena caused by heterogeneous surface tension in solids, J. Mech. Phys. Solids 41, pp 1499-1514, 1993.

    Rottman, C., Landau theory of coherent interphase interfaces, Phys. Rev. B 38, 12031, 1988.

    Saada, Adel S., Elasticity Theory and Applications, Pergamon Press, New York, pp.125-129, 1993.

    Sharma, P. and Ganti, S., Size-Dependent Eshelby’s Tensor for Embedded Nano-inclusions incorporating Surface/Interface Energies, J. Appl. Mech. 71, pp663-671, 2004.

    Sharma, P., Ganti, S. and Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett. 82, pp535-537, 2003.

    Shuttleworth, R., The surface tension of solids, Proc. Phys. Soc. A 63, pp444-457, 1950.

    Tai, C. T., Generalized Vector and Dyadic Analysis, IEEE Press, New York, 1992.

    Weissmüller, J. and Cahn, J. W., Mean stresses in microstructures due to interface stressses: A generalization of capillary equations for solids, Acta Mater. 45, pp1899-1906, 1997.

    Yang, F. Q., Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations, J. Appl. Phys. 95, 3516, 2004.

    Young, T. Phil., An essay on the cohesion of fluid, Philosophical Transactions of the Royal Society of London 95, pp65-87, 1805.

    Zhou, L. G. and Huang, H. C., Are surfaces elastically softer or stiffer?, Appl. Phys. Lett. 84, pp1940-1942, 2004.

    余健忠, 表面力對複合材料等效係數的影響, 國立成功大學土木工程研究所碩士論文, 2005.

    下載圖示 校內:立即公開
    校外:2006-08-01公開
    QR CODE