簡易檢索 / 詳目顯示

研究生: 吳致憲
Wu, Chih-Hsien
論文名稱: Bcl11b基因調控神經膠質瘤細胞的生長
Bcl11b Regulates Cell Growth of Glioma
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 60
中文關鍵詞: Bcl11b細胞週期細胞老化
外文關鍵詞: Bcl11b, cell cycle, senescence
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦膠質瘤(glioma) 是大腦中常見的惡性腫瘤,目前較普遍的治療方法是利用手術切除配合化學治療與(或)放射性治療來殺死腫瘤細胞,然而預後之存活率的提升仍然有限。B-cell leukimia/lymophoma 11B(Bcl11b,或稱CTIP2)為一種轉錄因子,表現在許多不同組織,包含中樞神經系統、胸腺、皮膚、胃上皮組織等。Bcl11b也被視為腫瘤抑制基因,在小鼠實驗研究發現,若缺乏Bcl11b基因,將會導致淋巴癌或白血症等病變。近期有越來越多的文獻指出,Bcl11b若表現在腫瘤細胞中,反而會扮演支持與促進腫瘤生長的角色,如在Ewing sarcoma細胞中,有大量Bcl11b基因表現,並使其更加惡化,本實驗室先前研究發現在生長較快速的腦膠質瘤細胞株C6中也發現高表現量的Bcl11b基因;並且,在多株人類神經膠質瘤細胞株中,也有高量的Bcl11b表現;因此,本研究欲進一步探討Bcl11b基因對於腦膠質瘤細胞之影響。本實驗以大鼠腦膠質瘤C6細胞株與人類腦膠質瘤細胞株U87為細胞模式,並利用帶有sh-Bcl11b基因之慢病毒感染細胞株,實驗結果顯示,在大鼠與人類腦膠質瘤細胞中,若降低Bcl11b基因表現,會抑制腫瘤細胞的增長速度和形成細胞群落之能力。另外,研究指出,細胞內代謝失調,導致過多的ROS累積,進而造成正常細胞的受損;但在腫瘤細胞中,過多的ROS累積卻會促使腫瘤細胞的生長。本研究結果指出,抑制Bcl11b基因之腫瘤細胞,其細胞內之ROS程度也大幅降低。而另一方面,在C6細胞與U87細胞觀察到,抑制Bcl11b基因後,造成週期蛋白依賴性激酶抑制分子(CDKi, p21)表現量上升。Bcl11b基因表現下降促使腫瘤細胞之細胞週期停滯,並且導致腫瘤細胞趨向老化之現象。基於本篇研究結果,我們指出表現於腦膠質瘤細胞的Bcl11b分子藉由作用於細胞週期抑制分子調控細胞的生長機制。

    INTRODUCTION
    Glioma is the most malignant brain tumor in adult. The most common treatments to glioma include a combination of surgery, radiotherapy, and chemotherapy. However, due to the high recurrence and invasiveness of glioma, the low survival rate of the patients with glioma after prognosis remains. B-cell leukimia/lymophoma 11B (Bcl11b), also named as CTIP2, is a transcription factor that is expressed predominantly in the central nervous system, thymocytes, skin, olfactory epithelium, and epithelia of oral and gut. The studies from others have demonstrated that Bcl11b acts as a tumor suppressor. Mutations or deletions of Bcl11b have been found in T-cell acute lymphoblastic leukemia. In contrast, the deficiency of Bcl11b can induce DNA damage and result in cell apoptosis. Recently, researchers have reported that Bcl11b was highly expressed in some tumor cells, such as Ewing sarcoma cells. In our previous study, the expression of Bcl11b was enriched in tumorigenic C6 glioma cell line. Thus, we were to determine the biological function of Bcl11b in glioma cells.

    MATERIALS AND METHODS
    Tumorigenic rat glioma cell line (C6) and human malignant glioblastoma (MG) cell line (U87) were used in this study to determine the functional role of Bcl11b in tumor cells. Lentivirus-mediated gene knockdown approach was conducted to inhibit the expression of Bcl11b in the two cell lines. Quantitative reverse transcription polymerase chain reaction (Q-PCR) and western blotting were used to measure mRNA expression and protein levels of Bcl11b in glioma cells. Immunofluorescence was used to examine the cellular localization of Bcl11b. MTT assay and colony formation assay were used to investigate cell proliferation and colony formation ability. Propidium iodide (PI) staining was used to detect the cell cycle of glioma cells. Senescence detection kit was used to investigate the activity of β-galactosidase which is highly accumulated in the lysosomes of senescent cells. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) was used to detect ROS levels in glioma cells.

    RESULTS
    Two cell strains with stably suppression of Bcl11b expression in C6 cells were generated by lentivirus-mediated Bcl11b gene knockdown system (C6-KD1 and C6-KD2). The inhibition of Bcl11b expression caused significant reduction in cell proliferation and colony formation ability of C6-KD1 and C6-KD2 cells compared with C6-mock cells. We also noticed that the cell morphology of the C6-KD1 and C6-KD2 cells changed from a bipolar shape toward a flattened form. In addition, Bcl11b was highly expressed in several human malignant glioma cell lines, including U373MG, U87MG, A172, U251 cells. Among these human malignant glioma cell lines, U87MG cells expressed the highest level of Bcl11b. Similar to the findings observed in C6 cells, the inhibition of Bcl11b expression not only caused the morphological change of U87 cells to the flatten shape, but also effectively suppressed their cell proliferation and decreased the colony formation ability. The result from ROS generation assay showed that the ROS level in Bcl11b-KD cells is lower the control cells. Furthermore, p21, a cyclin-dependent kinase inhibitor (CDKi), was significantly upregulated in C6 and U87 cells after Bcl11b gene knockdown. Propidium iodide (PI) staining combined with flow cytometry analysis provided the evidence showing that Bcl11b downregulation resulted in cell cycle arrest. Interestingly, after the downregulation of Bcl11b, glioma cells underwent senescence.

    CONCLUSIONS
    Bcl11b plays the essential role in the cell proliferation of glioma cells. The deficiency of Bcl11b can cause arrested growth and promoted cellular senescence in glioma cells. This could be due to the upregulation of p21 expression after Bcl11b gene knockdown.

    目錄 中文摘要 2 Abstract 4 誌謝 7 目錄 8 圖目錄 10 前言 12 一、 神經膠質瘤之介紹 12 二、 Bcl11b基因與腫瘤細胞之相關性 14 三、 細胞老化現象與細胞週期停滯 15 實驗目的 18 材料與方法 19 一、 材料 19 (一) 細胞培養材料 19 (二) 化學藥品 19 (三) 寡核甘酸購自MWG Biotech AG (Ebersberg, Germany) 20 (四) 抗體 21 (五) 試劑組及病毒載體 21 二、 方法 22 (一) 細胞培養 22 (二) 核酸即時定量分析(Quantitative Real-Time Polymerase Chain Reaction, Q-PCR) 23 (三) 西方點墨法(Western Blotting) 24 (四) 細胞增殖試驗(proliferation assay) 26 (五) 軟膠細胞群落形成能力試驗(soft agar colony formation assay) 27 (六) 細胞免疫螢光染色(cellular immunofluorescence, IF) 27 (七) 細胞週期分析 (cell cycle assay) 28 (八) 細胞老化試驗 (cellular senescence assay) 29 (九) 細胞ROS分析 (cellular ROS generation) 29 (十) 統計分析 30 結果 31 一、 慢病毒基因傳輸系統降低大鼠腦瘤細胞Bcl11b基因表現 31 二、 降低Bcl11b基因表現量使大鼠腦膠質瘤細胞的增生能力下降 31 三、 人類腦膠質瘤細胞與Bcl11b基因表現之關係 32 四、 Bcl11b基因表現與ROS程度之分析 33 五、 缺乏Bcl11b基因表現導致腦膠質瘤細胞之細胞週期停滯 34 六、 Bcl11b基因表現量較低之腦膠質瘤細胞呈現較老化的型態 34 七、 Bcl11b基因改變p21基因表現p53與蛋白質表現 35 討論 37 Bcl11b基因表現對於腫瘤生成的影響 37 Bcl11b基因與氧化壓力對腫瘤細胞的影響 38 Bcl11b基因與細胞週期的關係 38 Bcl11b基因造成細胞老化之探討 39 Bcl11b基因表現是否可以是好的腦膠質瘤的治療標的 40 結論 42 參考資料 43

    Bernhart E, Damm S, Heffeter P, Wintersperger A, Asslaber M, Frank S, Hammer A, Strohmaier H, Devaney T, Mrfka M, Eder H, Windpassinger C, Ireson CR, Mischel PS, Berger W, Sattler W (2014) Silencing of protein kinase D2 induces glioma cell senescence via p53-dependent and -independent pathways. Neuro-oncology.
    Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25-34.
    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349-352.
    Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685-705.
    Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutation research 704:12-20.
    Cherrier T, Suzanne S, Redel L, Calao M, Marban C, Samah B, Mukerjee R, Schwartz C, Gras G, Sawaya BE, Zeichner SL, Aunis D, Van Lint C, Rohr O (2009) p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1. Oncogene 28:3380-3389.
    Claassen GF, Hann SR (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proceedings of the National Academy of Sciences of the United States of America 97:9498-9503.
    Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223-233.
    Combs SE, Widmer V, Thilmann C, Hof H, Debus J, Schulz-Ertner D (2005) Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168-2173.
    d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194-198.
    de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & development 19:2100-2110.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America 92:9363-9367.
    Fang KM, Lin TC, Chan TC, Ma SZ, Tzou BC, Chang WR, Liu JJ, Chiou SH, Yang CS, Tzeng SF (2013) Enhanced cell growth and tumorigenicity of rat glioma cells by stable expression of human CD133 through multiple molecular actions. Glia 61:1402-1417.
    Fang KM, Yang CS, Lin TC, Chan TC, Tzeng SF (2014) Induced interleukin-33 expression enhances the tumorigenic activity of rat glioma cells. Neuro-oncology 16:552-566.
    Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, Drouin R, Klonisch T (2009) EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. European journal of pharmacology 625:23-30.
    Ganguli-Indra G, Wasylyk C, Liang X, Millon R, Leid M, Wasylyk B, Abecassis J, Indra AK (2009) CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PloS one 4:e5367.
    Gartel AL, Tyner AL (1998) The growth-regulatory role of p21 (WAF1/CIP1). Progress in molecular and subcellular biology 20:43-71.
    Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931-947.
    Grabarczyk P, Nahse V, Delin M, Przybylski G, Depke M, Hildebrandt P, Volker U, Schmidt CA (2010) Increased expression of bcl11b leads to chemoresistance accompanied by G1 accumulation. PloS one 5.
    Grabarczyk P, Przybylski GK, Depke M, Volker U, Bahr J, Assmus K, Broker BM, Walther R, Schmidt CA (2007) Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene 26:3797-3810.
    Gutierrez A, Kentsis A, Sanda T, Holmfeldt L, Chen SC, Zhang J, Protopopov A, Chin L, Dahlberg SE, Neuberg DS, Silverman LB, Winter SS, Hunger SP, Sallan SE, Zha S, Alt FW, Downing JR, Mullighan CG, Look AT (2011) The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. Blood 118:4169-4173.
    Harley CB (1991) Telomere loss: mitotic clock or genetic time bomb? Mutation research 256:271-282.
    Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458-460.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Experimental cell research 25:585-621.
    He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R, Khokhar AR, Kuang J (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24:2929-2943.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. The New England journal of medicine 352:997-1003.
    Kamimura K, Mishima Y, Obata M, Endo T, Aoyagi Y, Kominami R (2007) Lack of Bcl11b tumor suppressor results in vulnerability to DNA replication stress and damages. Oncogene 26:5840-5850.
    Kim HS, Heo JI, Park SH, Shin JY, Kang HJ, Kim MJ, Kim SC, Kim J, Park JB, Lee JY (2014) Transcriptional activation of p21(WAF(1)/CIP(1)) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts. Molecular biology reports 41:2397-2408.
    Kominami R (2012) Role of the transcription factor Bcl11b in development and lymphomagenesis. Proceedings of the Japan Academy Series B, Physical and biological sciences 88:72-87.
    Lagger G, Doetzlhofer A, Schuettengruber B, Haidweger E, Simboeck E, Tischler J, Chiocca S, Suske G, Rotheneder H, Wintersberger E, Seiser C (2003) The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Molecular and cellular biology 23:2669-2679.
    Lee JS, Xiao J, Patel P, Schade J, Wang J, Deneen B, Erdreich-Epstein A, Song HR (2014) A novel tumor-promoting role for nuclear factor IA in glioblastomas is mediated through negative regulation of p53, p21, and PAI1. Neuro-oncology 16:191-203.
    Li L, Leid M, Rothenberg EV (2010) An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329:89-93.
    Liu H, Zhou L, Shi S, Wang Y, Ni X, Xiao F, Wang S, Li P, Ding K (2014) Oligosaccharide G19 inhibits U-87 MG human glioma cells growth in vitro and in vivo by targeting epidermal growth factor (EGF) and activating p53/p21 signaling. Glycobiology.
    Liu P, Li P, Burke S (2010) Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunological reviews 238:138-149.
    Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497-512.
    MacLeod RA, Nagel S, Drexler HG (2004) BCL11B rearrangements probably target T-cell neoplasia rather than acute myelocytic leukemia. Cancer genetics and cytogenetics 153:88-89.
    Niculescu AB, 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI (1998) Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Molecular and cellular biology 18:629-643.
    Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, et al. (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342:705-708.
    Obata M, Kominami R, Mishima Y (2012) BCL11B tumor suppressor inhibits HDM2 expression in a p53-dependent manner. Cellular signalling 24:1047-1052.
    Poole AJ, Heap D, Carroll RE, Tyner AL (2004) Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene 23:8128-8134.
    Radhakrishnan SK, Feliciano CS, Najmabadi F, Haegebarth A, Kandel ES, Tyner AL, Gartel AL (2004) Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene 23:4173-4176.
    Radhakrishnan SK, Gartel AL (2006) A novel transcriptional inhibitor induces apoptosis in tumor cells and exhibits antiangiogenic activity. Cancer research 66:3264-3270.
    Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer research 63:2705-2715.
    Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, Afar D, Burdach SE (2004) DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer research 64:8213-8221.
    Storz P (2005) Reactive oxygen species in tumor progression. Frontiers in bioscience : a journal and virtual library 10:1881-1896.
    Suzuki T, Yokozaki H, Kuniyasu H, Hayashi K, Naka K, Ono S, Ishikawa T, Tahara E, Yasui W (2000) Effect of trichostatin A on cell growth and expression of cell cycle- and apoptosis-related molecules in human gastric and oral carcinoma cell lines. International journal of cancer Journal international du cancer 88:992-997.
    te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer research 62:1876-1883.
    Topark-Ngarm A, Golonzhka O, Peterson VJ, Barrett B, Jr., Martinez B, Crofoot K, Filtz TM, Leid M (2006) CTIP2 associates with the NuRD complex on the promoter of p57KIP2, a newly identified CTIP2 target gene. The Journal of biological chemistry 281:32272-32283.
    Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y, Hitomi J, Yamamoto T, Utsuyama M, Niwa O, Aizawa S, Kominami R (2003) Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nature immunology 4:533-539.
    Walker DG, Kaye AH (2001) Diagnosis and management of astrocytomas, oligodendrogliomas and mixed gliomas: a review. Australasian radiology 45:472-482.
    Wiles ET, Lui-Sargent B, Bell R, Lessnick SL (2013) BCL11B is up-regulated by EWS/FLI and contributes to the transformed phenotype in Ewing sarcoma. PloS one 8:e59369.
    Zheludkova OG, Tarasova IS, Gorbatykh SV, Belogurova MB, Kumirova EV, Borodina ID, Prityko AG, Melikian AG, Shcherbenko OI (2002) [Treatment of anaplastic astrocytomas and glioblastomas in children by the use of temozolomide (TMZ)]. Voprosy onkologii 48:356-360.
    Zhu C, Hu W, Wu H, Hu X (2014) No evident dose-response relationship between cellular ROS level and its cytotoxicity - a paradoxical issue in ROS-based cancer therapy. Scientific reports 4:5029.
    Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harbor perspectives in biology 1:a001883.

    無法下載圖示 校內:2019-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE