研究生: |
黃大銘 Huang, Da-Ming |
---|---|
論文名稱: |
結合定量超音波與彈性影像之智慧化組織病變評估 Smart Assessment of Tissue Lesion Combining Quantitative Ultrasound and Elastography |
指導教授: |
王士豪
Wang, Shyh-Hau |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 141 |
中文關鍵詞: | 軟組織病變特徵化 、剪切波成像 、定量超音波 、機器學習 、深度學習 |
外文關鍵詞: | soft tissue lesion characterization, shear wave elastography, quantitative ultrasound, machine learning, deep learning |
相關次數: | 點閱:52 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超音波成像與彈性影像已成為許多臨床檢測中不可或缺的工具。然而,這些方法的診斷準確性受到醫師經驗等超音波固有局限的影響,因此許多研究致力於定量與自動化評估以消弭超音波影像解讀的不確定性。其中,定量超音波(quantitative ultrasound, QUS)與人工智慧(artificial intelligent, AI)在提升診斷表現上已取得豐碩成果。因此,自動提取QUS並結合AI進行診斷的技術被認為可提高超音波檢測的效率。然而,結合定量評估與AI應用在連續監測與反應生理現象的可行性仍有待進一步探討。
為解決這些問題,動物活體實驗中使用30 MHz高頻超音波系統擷取病變軟組織的訊號。並透過缺血性皮瓣、傷口癒合與肌肉挫傷模型研究軟組織特性化、組織學分析關聯性、自動分類病理進程與改善彈性影像量測效能的可行性。最後根據實驗之結果評估QUS參數與AI模型在連續監測的表現。
結果顯示第0-7天,皮瓣的嚴重壞死將導致厚度減至67.01%與積體逆散射從-65.74 dB增至-60.66 dB,是由於缺血性壞死進程中的發炎、膠原蛋白萎縮與變質所造成。而第0-14天的傷口癒合過程造成m參數從0.51增至0.85、剪切波速度從5.74 m/s減至2.72 m/s。組織切片中則發現免疫細胞聚集和尚未癒合的傷口,說明參數的變化可對應受損皮膚組織的發炎與受破壞的結構。在挫傷肌肉恢復的評估中,積體逆散射、m參數、剪切波速度、剪切波衰減與紋理特徵隨發炎反應與膠原蛋白再生,在第1-2天達到最大或最小值,並在第3天到21天呈現相反的趨勢。這些實驗中皆證實QUS參數可反映不同生理狀況,並更全面地特徵化軟組織病變的進程。而使用Relief演算法與light gradient boosting machine在肌肉恢復的分類上達到93.57% 的準確度,證實可透過機器學習整合這些參數,以更好地進行軟組織診斷。此外,研究中根據超音波射頻訊號之特性,提出correlation and attention modulated gated recurrent unit (CAM-GRU)網路預測彈性影像的位移量,以改善機械性質量測。結果顯示透過提供相關性資料與注意力機制可顯著增加CAM-GRU於位移量預測的表現,相較傳統方法可達到0.80的皮爾森相關係數。而動物實驗說明在評估挫傷恢復進程與傳統方法有一致的結果,證明CAM-GRU量測彈性的可行性。
本論文中的實驗結果皆證實QUS參數可用於連續評估、監測並對應組織學分析結果。並且,由於個別參數僅反映部分病理變化,AI方法可全面地整合不同定量量測方法,以提升診斷軟組織病變的效能。
Ultrasound imaging and elastography have been an essential modality for a large number of clinical examinations. Yet, the diagnostic accuracy of those methods is compromised by the intrinsic limitation of physician’s experience, and extensive efforts have been made for quantitative and automatic assessment to alleviate the uncertainty in ultrasound interpretation. Particularly, promising results have been proposed to improve diagnosis performance by quantitative ultrasound (QUS) and artificial intelligent (AI). Therefore, techniques combining with automatic QUS extraction and AI applications for diagnosis are proposed able to improve the efficiency of ultrasound examinations. However, further exploration in the feasibility of combining quantitative measurements with AI for continuous monitoring and correlation with physiological conditions is essential.
To address these issues, in vivo animal experiments were implemented to acquire the signals from soft tissue lesions by a 30 MHz high-frequency ultrasound system. The characterization of soft tissue, correlation with histological analysis, automatic classification of pathological progression, and improvement of elastography examination were explored by ischemic skin flap, wound healing, and muscle contusion models. Consequently, the performance of continuous monitoring using QUS parameters and AI models was assessed in accordance with the experimental results.
Results demonstrated that severe necrosis of skin flap led to a decreased thickness to 67.01% and an increased integrated backscatter from -65.74 dB to -60.66 dB from day 0 to 7, corresponding to inflammation, collagen shrinkage and denaturation during the progression of ischemic necrosis. The wound healing progression resulted in an increased m parameter from 0.51 to 0.85 and a decreased shear wave velocity from 5.74 m/s to 2.72 m/s from day 0 to 14. The aggregation of immune cells and unrecovered wounds were found in the histological sections, indicating the parameter variations were associated with inflammation of injured skin tissue and disrupted structure. In the assessment of contused muscle recovery, integrated backscatter, m parameter, shear wave velocity, attenuation, and textural features also achieved the maximum or minimum on day 1 or 2, followed by the reversed tendency from day 3 to 21 in accordance with inflammation and collagen regeneration. These experimental results constantly demonstrated QUS parameters were able to correlate with various physiological conditions and comprehensively characterize the progression of soft tissue lesions. The accuracy of contusion recovery classification was 93.57% by Relief algorithm and light gradient boosting machine, demonstrating the machine learning can integrate these parameters for better diagnosis of soft tissues. Moreover, to improve the measurement of mechanical properties, the correlation and attention modulated gated recurrent unit (CAM-GRU) was proposed based on the characteristics of ultrasound radio-frequency signals for displacement estimation in elastography. Results showed the displacement estimation was improved using CAM-GRU by providing correlation information and attention mechanism, achieving 0.80 Pearson’s correlation coefficient in comparison with conventional method. Furthermore, the results in animal experiments were consistent with the conventional method in assessment of contusion recovery progression, demonstrating the feasibility of measuring elasticity by CAM-GRU.
The experiments in this dissertation all demonstrated that QUS parameters were feasible for continuous monitoring and correlation with histological analysis. Moreover, individual QUS parameter only corresponded to partial physiological conditions. The results of different quantitative measurements can be comprehensively integrated by AI methods to improve the performance of soft tissue lesion diagnosis.
Aly, I., Rizvi, A., Roberts, W., Khalid, S., Kassem, M. W., Salandy, S., du Plessis, M., Tubbs, R. S., & Loukas, M. (2021). Cardiac ultrasound: an anatomical and clinical review. Translational Research in Anatomy, 22, 100083.
Amichi, A., & Laugier, P. (2009). Quantitative texture analysis and transesophageal echocardiography to characterize the acute myocardial contusion. The open medical informatics journal, 3, 13.
Ardigo, M., Agozzino, M., Franceschini, C., & Lacarrubba, F. (2016). Reflectance confocal microscopy algorithms for inflammatory and hair diseases. Dermatologic clinics, 34(4), 487-496.
Asano, S., Ito, S., Takahashi, K., Furuya, K., Kondo, M., Sokabe, M., & Hasegawa, Y. (2017). Matrix stiffness regulates migration of human lung fibroblasts. Physiological reports, 5(9), e13281.
Băbțan, A. M., Vesa, Ș. C., Boșca, B. A., Crișan, M., Mihu, C. M., Băciuț, M. F., Dinu, C., Crișan, B., Câmpian, R. S., & Feurdean, C. N. (2021). High-Frequency Ultrasound Assessment of Skin and Oral Mucosa in Metabolic Syndrome Patients—A Cross-Sectional Study. Journal of clinical medicine, 10(19), 4461.
Bagasta, A. R., Rustam, Z., Pandelaki, J., & Nugroho, W. A. (2019). Comparison of cubic SVM with Gaussian SVM: classification of infarction for detecting ischemic stroke. IOP conference series: materials science and engineering.
Bamber, J., Cosgrove, D., Dietrich, C. F., Fromageau, J., Bojunga, J., Calliada, F., Cantisani, V., Correas, J.-M., D’onofrio, M., & Drakonaki, E. (2013). EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in der Medizin-European Journal of Ultrasound, 34(02), 169-184.
Ben-Hur, A., Ong, C. S., Sonnenburg, S., Schölkopf, B., & Rätsch, G. (2008). Support vector machines and kernels for computational biology. PLoS computational biology, 4(10), e1000173.
Bercoff, J., Tanter, M., & Fink, M. (2004). Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 51(4), 396-409.
Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data. Knowledge and information systems, 34, 483-519.
Brynjolfsson, E., & Mcafee, A. (2017). Artificial intelligence, for real. Harvard business review, 1, 1-31.
Campbell, R., & Wood, J. (2002). Ultrasound of muscle. Imaging, 14(3), 229-240.
Castera, L., Forns, X., & Alberti, A. (2008). Non-invasive evaluation of liver fibrosis using transient elastography. Journal of hepatology, 48(5), 835-847.
Celebi, M. E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., & Schaefer, G. (2015). A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy image analysis, 10(1), 97-129.
Chen, S.-H., Lin, Y.-H., Li, W.-T., Wang, S.-H., & Huang, C.-C. (2012). Estimation of cell concentration using high-frequency ultrasonic backscattering. Journal of medical and biological engineering, 32(3), 157-162.
Chifor, R., Badea, A. F., Chifor, I., Mitrea, D.-A., Crisan, M., & Badea, M. E. (2019). Periodontal evaluation using a non-invasive imaging method (ultrasonography). Medicine and pharmacy reports, 92(3), S20.
Couade, M. (2016). The advent of ultrafast ultrasound in vascular imaging: a review. Journal of vascular diagnostics and interventions, 4, 9-22.
Crisan, D., Crisan, M., Moldovan, M., Lupsor, M., & Badea, R. (2012). Ultrasonographic assessment of the cutaneous changes induced by topical flavonoid therapy. Clinical, cosmetic and investigational dermatology, 5, 7.
Cui, X.-W., Li, K.-N., Yi, A.-J., Wang, B., Wei, Q., Wu, G.-G., & Dietrich, C. F. (2022). Ultrasound elastography. Endoscopic ultrasound, 11(4), 252-274.
DeJong, H., Abbott, S., Zelesco, M., Spilsbury, K., Martin, L., Sanderson, R., Ziman, M., Kennedy, B. F., & Wood, F. M. (2020). A novel, reliable protocol to objectively assess scar stiffness using shear wave elastography. Ultrasound in medicine & biology, 46(7), 1614-1629.
Deutz, N. E., Ashurst, I., Ballesteros, M. D., Bear, D. E., Cruz-Jentoft, A. J., Genton, L., Landi, F., Laviano, A., Norman, K., & Prado, C. M. (2019). The underappreciated role of low muscle mass in the management of malnutrition. Journal of the American Medical Directors Association, 20(1), 22-27.
Dey, R., & Salem, F. M. (2017). Gate-variants of gated recurrent unit (GRU) neural networks. IEEE international midwest symposium on circuits and systems.
Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet: Learning optical flow with convolutional networks. Proceedings of the IEEE international conference on computer vision.
Draghi, F., Zacchino, M., Canepari, M., Nucci, P., & Alessandrino, F. (2013). Muscle injuries: ultrasound evaluation in the acute phase. Journal of ultrasound, 16(4), 209-214.
Dupond, S. (2019). A thorough review on the current advance of neural network structures. Annual reviews in control, 14(14), 200-230.
Durham, A. L., Speer, M. Y., Scatena, M., Giachelli, C. M., & Shanahan, C. M. (2018). Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovascular research, 114(4), 590-600.
Ekstrand, J., Hägglund, M., & Waldén, M. (2011). Epidemiology of muscle injuries in professional football (soccer). The American journal of sports medicine, 39(6), 1226-1232.
El Naqa, I., & Murphy, M. J. (2015). What is machine learning? Springer.
Evirgen, Ş., & Kamburoğlu, K. (2016). Review on the applications of ultrasonography in dentomaxillofacial region. World journal of radiology, 8(1), 50.
Filius, A., Scheltens, M., Bosch, H. G., Van Doorn, P. A., Stam, H. J., Hovius, S. E., Amadio, P. C., & Selles, R. W. (2015). Multidimensional ultrasound imaging of the wrist: Changes of shape and displacement of the median nerve and tendons in carpal tunnel syndrome. Journal of Orthopaedic Research, 33(9), 1332-1340.
Fischer, A. H., Jacobson, K. A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor protocols, 2008(5), 4986.
Fredman, G., Qiu, Y., Ardigò, M., & Mogensen, M. (2021). Skin tags imaged by reflectance confocal microscopy, optical coherence tomography and multispectral optoacoustic tomography at the bedside. Skin Research and Technology, 27(3), 324-331.
Furlan, A., Tublin, M. E., Yu, L., Chopra, K. B., Lippello, A., & Behari, J. (2020). Comparison of 2D shear wave elastography, transient elastography, and MR elastography for the diagnosis of fibrosis in patients with nonalcoholic fatty liver disease. American Journal of Roentgenology, 214(1), W20-W26.
Garra, B. S. (2015). Elastography: history, principles, and technique comparison. Abdominal imaging, 40, 680–697.
Gennisson, J.-L., Deffieux, T., Fink, M., & Tanter, M. (2013). Ultrasound elastography: principles and techniques. Diagnostic and interventional imaging, 94(5), 487-495.
Grigorescu, S., Trasnea, B., Cocias, T., & Macesanu, G. (2020). A survey of deep learning techniques for autonomous driving. Journal of field robotics, 37(3), 362-386.
Guermazi, A., Roemer, F. W., Robinson, P., Tol, J. L., Regatte, R. R., & Crema, M. D. (2017). Imaging of muscle injuries in sports medicine: sports imaging series. Radiology, 282(3), 646-663.
Guimarães, C. F., Gasperini, L., Marques, A. P., & Reis, R. L. (2020). The stiffness of living tissues and its implications for tissue engineering. Nature Reviews Materials, 5(5), 351-370.
Han, G., & Ceilley, R. (2017). Chronic wound healing: a review of current management and treatments. Advances in therapy, 34, 599-610.
Harder, Y., Amon, M., Laschke, M., Schramm, R., Rücker, M., Wettstein, R., Bastiaanse, J., Frick, A., Machens, H.-G., & Küntscher, M. (2008). An old dream revitalised: preconditioning strategies to protect surgical flaps from critical ischaemia and ischaemia-reperfusion injury. Journal of plastic, reconstructive & aesthetic surgery, 61(5), 503-511.
Harms, J., Lei, Y., Wang, T., Zhang, R., Zhou, J., Tang, X., Curran, W. J., Liu, T., & Yang, X. (2019). Paired cycle‐GAN‐based image correction for quantitative cone‐beam computed tomography. Medical physics, 46(9), 3998-4009.
He, T., & Droppo, J. (2016). Exploiting LSTM structure in deep neural networks for speech recognition. 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP).
Hoskins, P. R. (2019). Elastography. In Diagnostic Ultrasound, Third Edition (pp. 259-274). CRC Press.
Hsueh, Y.-Y., Wang, D.-H., Huang, T.-C., Chang, Y.-J., Shao, W.-C., Tuan, T.-L., Hughes, M. W., & Wu, C.-C. (2016). Novel skin chamber for rat ischemic flap studies in regenerative wound repair. Stem cell research & therapy, 7(1), 72.
Hu, X., Qiu, L., Liu, D., & Qian, L. (2017). Acoustic Radiation Force Impulse (ARFI) Elastography for non‑invasive evaluation of hepatic fibrosis in chronic hepatitis B and C patients: a systematic review and meta-analysis. Medical ultrasonography, 19(1), 23-31.
Huang, D.-M., & Wang, S.-H. (2024). In Situ Monitoring and Assessment of Ischemic Skin Flap by High-Frequency Ultrasound and Quantitative Parameters. Sensors, 24(2), 363.
Huang, Y., Wang, Z., Liao, B., Liang, J.-Y., Zhou, L.-Y., Wang, F., Li, W., Liu, J.-Y., Xie, X.-Y., & Lu, M.-D. (2016). Assessment of liver fibrosis in chronic hepatitis B using acoustic structure quantification: quantitative morphological ultrasound. European radiology, 26(7), 2344-2351.
Huang, Z., Liang, D., Xu, P., & Xiang, B. (2020). Improve transformer models with better relative position embeddings. arXiv:2009.13658.
Huwart, L., Sempoux, C., Vicaut, E., Salameh, N., Annet, L., Danse, E., Peeters, F., ter Beek, L. C., Rahier, J., & Sinkus, R. (2008). Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology, 135(1), 32-40.
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., & Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. Proceedings of the IEEE conference on computer vision and pattern recognition.
Jiang, R., Lin, C., Jiang, C., Huang, Z., Gao, W., & Lin, D. (2020). Nobiletin enhances the survival of random pattern skin flaps: involvement of enhancing angiogenesis and inhibiting oxidative stress. International immunopharmacology, 78, 106010.
Jin, F. Q., & Palmeri, M. L. (2020). Does ultrasonic data format matter for deep neural networks? IEEE International Ultrasonics Symposium.
Joodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323-343.
Järvinen, T. A., Järvinen, T. L., Kääriäinen, M., Äärimaa, V., Vaittinen, S., Kalimo, H., & Järvinen, M. (2007). Muscle injuries: optimising recovery. Best practice & research Clinical rheumatology, 21(2), 317-331.
Järvinen, T. A., Järvinen, T. L., Kääriäinen, M., Kalimo, H., & Järvinen, M. (2005). Muscle injuries: biology and treatment. The American journal of sports medicine, 33(5), 745-764.
Järvinen, T. A., Kääriäinen, M., Järvinen, M., & Kalimo, H. (2000). Muscle strain injuries. Current opinion in rheumatology, 12(2), 155-161.
Kailiang, Z., Yihui, Z., Dingsheng, L., & Xianyao, T. (2016). Effects of muscone on random skin flap survival in rats. Journal of reconstructive microsurgery, 32(03), 200-207.
Karamizadeh, S., Abdullah, S. M., Manaf, A. A., Zamani, M., & Hooman, A. (2020). An overview of principal component analysis. Journal of Signal and Information Processing, 4.
Kavitha, M., & Reddy, M. R. (2012). Characterization of tissue mimicking phantoms for acoustic radiation force impulse imaging. IEEE International Conference on Imaging Systems and Techniques.
Kawasumi, A., Sagawa, N., Hayashi, S., Yokoyama, H., & Tamura, K. (2012). Wound healing in mammals and amphibians: toward limb regeneration in mammals. In New Perspectives in Regeneration (pp. 33-49). Springer.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
Kibria, M., & Rivaz, H. (2018). Gluenet: Ultrasound elastography using convolutional neural network. In Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation (pp. 21-28). Springer.
Kiernan, J. (2015). Histological and histochemical methods. Scion Publishing Ltd.
Kijanka, P., & Urban, M. W. (2018). Local phase velocity based imaging: A new technique used for ultrasound shear wave elastography. IEEE transactions on medical imaging, 38(4), 894-908.
Kim, H. G., Park, M. S., Lee, J. D., & Park, S. Y. (2017). Ultrasound elastography of the neonatal brain: preliminary study. Journal of ultrasound in medicine, 36(7), 1313-1319.
Kim, H. J., Ryu, K. N., Sung, D. W., & Park, Y. K. (2002). Correlation between sonographic and pathologic findings in muscle injury: experimental study in the rabbit. Journal of ultrasound in medicine, 21(10), 1113-1119.
Kim, J.-Y., Lee, H.-S., & Oh, J.-S. (2020). Study on prediction of ship’s power using light GBM and XGBoost. Journal of the Korean Society of Marine Engineering, 44(2), 174-180.
Kusumaningrum, R., Wei, H., Manurung, R., & Murni, A. (2014). Integrated visual vocabulary in latent Dirichlet allocation–based scene classification for IKONOS image. Journal of applied remote sensing, 8(1), 083690-083690.
Lee, J.-H., You, H.-J., Lee, T.-Y., & Kang, H. J. (2022). Current status of experimental animal skin flap models: ischemic preconditioning and molecular factors. International journal of molecular sciences, 23(9), 5234.
Lenz, Y., Gross, R., Penna, V., Bannasch, H., Stark, G. B., & Eisenhardt, S. U. (2018). Evaluation of the implantable Doppler probe for free flap monitoring in lower limb reconstruction. Journal of reconstructive microsurgery, 34(03), 218-226.
Li, S., Tsui, P.-H., Song, S., Wu, W., Zhou, Z., & Wu, S. (2022). Detection of microwave ablation coagulation areas using ultrasound Nakagami imaging based on Gaussian pyramid decomposition: A feasibility study. Ultrasonics, 124, 106758.
Lin, H.-C., & Wang, S.-H. (2020). Window-Modulated Compounding Nakagami Parameter Ratio Approach for Assessing Muscle Perfusion with Contrast-Enhanced Ultrasound Imaging. Sensors, 20(12), 3584.
Lin, Y.-H., Huang, C.-C., & Wang, S.-H. (2011). Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model. Physics in medicine and biology, 56(3), 757.
Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S. X., Ni, D., & Wang, T. (2019). Deep learning in medical ultrasound analysis: a review. Engineering, 5(2), 261-275.
Liu, X., Song, J., Wang, S., Zhao, J., & Chen, Y. (2017). Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors, 17(1), 149.
Liu, Y., Liu, Z., Luo, X., & Zhao, H. (2022). Diagnosis of Parkinson's disease based on SHAP value feature selection. Biocybernetics and biomedical engineering, 42(3), 856-869.
Luze, H., Nischwitz, S. P., Wurzer, P., Winter, R., Spendel, S., Kamolz, L.-P., & Bjelic-Radisic, V. (2022). Assessment of Mastectomy Skin Flaps for Immediate Reconstruction with Implants via Thermal Imaging—A Suitable, Personalized Approach? Journal of personalized medicine, 12(5), 740.
Ma, X., Lin, Y., Liu, Y., Li, W., He, J., Fang, M., & Lin, D. (2021). Effects of Apigenin treatment on random skin flap survival in rats. Frontiers in pharmacology, 12, 625733.
Malecki, I. (2013). Physical foundations of technical acoustics. Elsevier.
Manickam, K., Machireddy, R. R., & Seshadri, S. (2014a). Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques. Journal of the mechanical behavior of biomedical materials, 35, 132-143.
Manickam, K., Machireddy, R. R., & Seshadri, S. (2014b). Study of ultrasound stiffness imaging methods using tissue mimicking phantoms. Ultrasonics, 54(2), 621-631.
Martínez-Payá, J. J., Ríos-Díaz, J., del Baño-Aledo, M. E., Tembl-Ferrairó, J. I., Vazquez-Costa, J. F., & Medina-Mirapeix, F. (2017). Quantitative muscle ultrasonography using textural analysis in amyotrophic lateral sclerosis. Ultrasonic imaging, 39(6), 357-368.
Mercandetti, M., & Cohen, A. (2017). Wound healing and repair. Emedicine, 14(1), 12-20.
Mishra, S. P., Sarkar, U., Taraphder, S., Datta, S., Swain, D., Saikhom, R., Panda, S., & Laishram, M. (2017). Multivariate statistical data analysis-principal component analysis (PCA). International Journal of Livestock Research, 7(5), 60-78.
Mukund, K., & Subramaniam, S. (2020). Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 12(1), e1462.
Nightingale, K. (2011). Acoustic radiation force impulse (ARFI) imaging: a review. Current medical imaging, 7(4), 328-339.
Nightingale, K. R., Nightingale, R. W., Palmeri, M. L., & Trahey, G. E. (2000). A finite element model of remote palpation of breast lesions using radiation force: Factors affecting tissue displacement. Ultrasonic imaging, 22(1), 35-54.
Nii, K., Tagawa, N., Okubo, K., & Yagi, S.-i. (2013). Finite Element Method Study for Generating Shear Wave by Mode Conversion of Longitudinal Wave at Elasticity Boundary in a Living Body. Japanese journal of applied physics, 52(7S), 07HF23.
O'Donnell, M., Bauwens, D., Mimbs, J., & Miller, J. (1979). Broadband integrated backscatter: An approach to spatially localized tissue characterization in vivo. Ultrasonics Symposium.
O'Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv:1511.08458.
Paquette, D., & Falanga, V. (2002). Leg ulcers. Clinics in geriatric medicine, 18(1), 77-88.
Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S., & Mohammadian, A. K. (2020). Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accident Analysis and Prevention, 136, 105405.
Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE transactions on pattern analysis and machine intelligence, 27(8), 1226-1238.
Peng, L., Pan, X., & Yin, G. (2015). Natural hirudin increases rat flap viability by anti-inflammation via PARs/p38/NF-κB pathway. BioMed research international, 2015.
Povey, M. J. (2013). Ultrasound particle sizing: A review. Particuology, 11(2), 135-147.
Rah, D. K., Min, H. J., Kim, Y. W., & Cheon, Y. W. (2017). Effect of platelet-rich plasma on ischemia-reperfusion injury in a skin flap mouse model. International journal of medical sciences, 14(9), 829.
Ranjkesh, M., Hajibonabi, F., Seifar, F., Tarzamni, M. K., Moradi, B., & Khamnian, Z. (2020). Diagnostic value of elastography, strain ratio, and elasticity to B-mode ratio and color Doppler ultrasonography in breast lesions. International journal of general medicine, 215-224.
Remeseiro, B., & Bolon-Canedo, V. (2019). A review of feature selection methods in medical applications. Computers in biology and medicine, 112, 103375.
Ren, W.-W., Wang, L.-F., Zhu, A.-Q., Zhao, C.-K., & Zhang, Y.-F. (2022). Anatomy and Ultrasound Manifestation of Normal Skin. In Diagnostic Ultrasound in Dermatology (pp. 37-44). Springer Singapore.
Roldán, F. A. (2014). Ultrasound skin imaging. Actas Dermo-Sifiliográficas (English Edition), 105(10), 891-899.
Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. Pearson FT Press.
SantAnna, J. P. C., Pedrinelli, A., Hernandez, A. J., & Fernandes, T. L. (2022). Muscle injury: pathophysiology, diagnosis, and treatment. Revista brasileira de ortopedia, 57, 1-13.
Schuppan, D., Ashfaq-Khan, M., Yang, A. T., & Kim, Y. O. (2018). Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biology, 68, 435-451.
Seo, J., Nguon, L. S., & Park, S. (2023). Vascular wall motion detection models based on long short-term memory in plane-wave-based ultrasound imaging. Physics in medicine and biology, 68(7), 075005.
Shankar, P. M. (2000). A general statistical model for ultrasonic backscattering from tissues. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 47(3), 727-736.
Shiina, T. (2017). WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound in Medicine and Biology, 43, S191-S192.
Shung, K. K. (2015). Diagnostic ultrasound: Imaging and blood flow measurements. CRC press.
Sigrist, R. M., Liau, J., El Kaffas, A., Chammas, M. C., & Willmann, J. K. (2017). Ultrasound elastography: review of techniques and clinical applications. Theranostics, 7(5), 1303.
Singh, D. P., Barani Lonbani, Z., Woodruff, M. A., Parker, T. J., Steck, R., & Peake, J. M. (2017). Effects of topical icing on inflammation, angiogenesis, revascularization, and myofiber regeneration in skeletal muscle following contusion injury. Frontiers in physiology, 8, 93.
Somvanshi, M., Chavan, P., Tambade, S., & Shinde, S. (2016). A review of machine learning techniques using decision tree and support vector machine. International conference on computing communication control and automation.
Sugimoto, K., Moriyasu, F., Oshiro, H., Takeuchi, H., Yoshimasu, Y., Kasai, Y., Furuichi, Y., & Itoi, T. (2018). Viscoelasticity measurement in rat livers using shear-wave US elastography. Ultrasound in medicine & biology, 44(9).
Sun, D., Yang, X., Liu, M.-Y., & Kautz, J. (2018). Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. IEEE conference on computer vision and pattern recognition.
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27.
Tang, A., Cloutier, G., Szeverenyi, N. M., & Sirlin, C. B. (2015). Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques. AJR. American journal of roentgenology, 205(1), 22.
Tealab, A. (2018). Time series forecasting using artificial neural networks methodologies: A systematic review. Future Computing and Informatics Journal, 3(2), 334-340.
Tehrani, A. K., & Rivaz, H. (2020). Displacement estimation in ultrasound elastography using pyramidal convolutional neural network. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 67(12), 2629-2639.
Tsai, W.-Y., Hsueh, Y.-Y., Chen, P.-Y., Hung, K.-S., & Huang, C.-C. (2022). High-frequency ultrasound elastography for assessing elastic properties of skin and scars. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 69(6), 1871-1880.
Tse, Z., Janssen, H., Hamed, A., Ristic, M., Young, I., & Lamperth, M. (2009). Magnetic resonance elastography hardware design: a survey. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 223(4), 497-514.
Tsui, P.-H., & Chang, C.-C. (2007). Imaging local scatterer concentrations by the Nakagami statistical model. Ultrasound in Medicine and Biology, 33(4), 608-619.
Tsui, P.-H., Huang, C.-C., Chang, C.-C., Wang, S.-H., & Shung, K. K. (2007). Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro. Physics in medicine and biology, 52(21), 6413.
Tsui, P.-H., Ma, H.-Y., Zhou, Z., Ho, M.-C., & Lee, Y.-H. (2014). Window-modulated compounding Nakagami imaging for ultrasound tissue characterization. Ultrasonics, 54(6), 1448-1459.
Tsui, P.-H., Yeh, C. K., & Chang, C. C. (2008). Noise effect on the performance of Nakagami image in ultrasound tissue characterization. Journal of medical and biological engineering, 28, 197-202.
Tsui, P.-H., Zhou, Z., Lin, Y.-H., Hung, C.-M., Chung, S.-J., & Wan, Y.-L. (2017). Effect of ultrasound frequency on the Nakagami statistics of human liver tissues. PloS one, 12(8), e0181789.
Ueblacker, P., Mueller-Wohlfahrt, H.-W., & Ekstrand, J. (2015). Epidemiological and clinical outcome comparison of indirect (‘strain’) versus direct (‘contusion’) anterior and posterior thigh muscle injuries in male elite football players: UEFA Elite League study of 2287 thigh injuries (2001–2013). British journal of sports medicine, 49(22), 1461-1465.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Virmani, J., Kumar, V., Kalra, N., & Khandelwal, N. (2013). SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of digital imaging, 26(3), 530-543.
von Erlach, T. C., Bertazzo, S., Wozniak, M. A., Horejs, C.-M., Maynard, S. A., Attwood, S., Robinson, B. K., Autefage, H., Kallepitis, C., & del Río Hernández, A. (2018). Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nature materials, 17(3), 237-242.
Wang, Y., Li, X., Lv, H., Sun, L., Liu, B., Zhang, X., & Xu, X. (2023). Therapeutic potential of naringin in improving the survival rate of skin flap: A review. Frontiers in pharmacology, 14, 1128147.
Weinzaepfel, P., Revaud, J., Harchaoui, Z., & Schmid, C. (2013). DeepFlow: Large displacement optical flow with deep matching. Proceedings of the IEEE international conference on computer vision.
Weng, W.-C., Tsui, P.-H., Lin, C.-W., Lu, C.-H., Lin, C.-Y., Shieh, J.-Y., Lu, F. L., Ee, T.-W., Wu, K.-W., & Lee, W.-T. (2017). Evaluation of muscular changes by ultrasound Nakagami imaging in Duchenne muscular dystrophy. Scientific reports, 7(1), 1-11.
Woodhouse, J. B., & McNally, E. G. (2011). Ultrasound of skeletal muscle injury: an update. Seminars in Ultrasound, CT and MRI.
Wortsman, X. (2012). Common applications of dermatologic sonography. Journal of ultrasound in medicine, 31(1), 97-111.
Wu, J., Li, B., Sun, X., Cao, G., Rubin, D. L., Napel, S., Ikeda, D. M., Kurian, A. W., & Li, R. (2017). Heterogeneous enhancement patterns of tumor-adjacent parenchyma at MR imaging are associated with dysregulated signaling pathways and poor survival in breast cancer. Radiology, 285(2), 401-413.
Xiao, C., Li, Z., Lu, J., Wang, J., Zheng, H., Bi, Z., Chen, M., Mao, R., & Lu, M. (2021). A new deep learning method for displacement tracking from ultrasound RF signals of vascular walls. Computerized Medical Imaging and Graphics, 87, 101819.
Xin, Y., Liu, F., Li, D., & Zhu, J. (2022). Viscoelasticity assessment for in vivo quantification of muscle contusion injury in rats using shear wave elastography. Ultrasound in medicine & biology, 48(10), 2019-2028.
Yang, X., Tridandapani, S., Beitler, J. J., Yu, D. S., Yoshida, E. J., Curran, W. J., & Liu, T. (2012). Ultrasound GLCM texture analysis of radiation‐induced parotid‐gland injury in head‐and‐neck cancer radiotherapy: An in vivo study of late toxicity. Medical physics, 39(9), 5732-5739.
Zheng, Y., Chen, S., Tan, W., & Greenleaf, J. F. (2003). Kalman filter motion detection for vibro-acoustography using pulse echo ultrasound. IEEE Symposium on Ultrasonics, 2003.
Zheng, Y., Chen, S., Tan, W., Kinnick, R., & Greenleaf, J. F. (2007). Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(2), 290-300.